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On the relationship between the mean flow and subgrid stresses
in large eddy simulation of turbulent shear flows
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The present study sheds light on the subgrid modeling problem encountered in the large eddy
simulation(LES) of practical flows, where the turbulence is both inhomogeneous and anisotropic
due to mean flow gradients. The subgrid scale st8&S tensor, the quantity that is key to the
success of LES, is studied here in such flows using both analysis and direct numerical simulation
(DNS). It is shown that the SGS tensor, for the case of inhomogeneous flow, where the filtering
operation is necessarily performed in physical space, contains two components: a rapid part that
depends explicitly on the mean velocity gradient and a slow part that does not. The characterization,
rapid and slow, is adopted by analogy to that used in the modeling of the pressure—strain in the
Reynolds-averaged Navier—Stokes equations. In the absence of mean flow gradients, the slow part
is the only nonzero component and has been the subject of much theoretical study. However, the
rapid part can be important in the inhomogeneous flows that are often encountered in practice. An
analytical estimate of the relative magnitude of the rapid and slow components is derived and the
distinct role of each component in the energy transfer between the resolved grid scales and the
unresolved subgrid scales is identified. Results that quantify this new decomposition are obtained
from DNS data of a turbulent mixing layer. The rapid part is shown to play an important role when
the turbulence is in a nonequilibrium state with turbulence production much larger than dissipation
or when the filter size is not very small compared to the characteristic integral scale of the
turbulence, as in the case of practical LES applications. More importantly, the SGS is observed to
be highly anisotropic due to the close connection of the rapid part with the mean shear. The
Smagorinsky eddy viscosity and the scale-similarity models are tested by perfaarpimngri tests

with data from DNS of the mixing layer. It is found that the scale-similarity model correctly
represents the anisotropic energy transfer between grid and subgrid scales that is associated with the
rapid part, while the eddy viscosity model captures the dissipation associated with the slow part.
This may be a physical reason for the recent successes of the mixed (@odgjorinsky plus scale
similarity) reported in the literature. €999 American Institute of Physics.

[S1070-663(99)02205-9

I. INTRODUCTION mits LES for high-Reynolds number situations, where DNS
would be impossible. LES is still more computationally in-
The large eddy simulatiofLES) technique has been de- tensive than applications of classical Reynolds-averaged
veloped over the past 30 years with the aim of simulatingmodels. The attractiveness of the LES method lies in the
high-Reynolds number turbulent flow. The LES approach in-expectation of being able to successfully obtain the statistics
volves the simulation of the governing equations for theof interest with SGS modeling that is both simpler and more
“large” (grid-scale eddies with models assumed for the universal than Reynolds-averaged modeling. Numerous
“small” (subgrid-scalgeddies. Although LES requires a so- simple turbulent flows, for example, isotropic turbulence,
lution of the three-dimensional, unsteady Navier—Stokeshannel flow, and pipe flow have been simulated with suc-
equations, as does DN@lirect numerical simulation the  cess. The ultimate goal of LES in engineering applications is
grids are much coarser than those of DNS because the sm&@l predict complex, three-dimensional, high-Reynolds num-

scales are not resolved. The smaller computational effort peper turbulent flows, for example, around an aircraft or in an
engine. However, the development of a reliable LES meth-

a o odology and accurate subgrid-scale models present signifi-
Electronic mail: shao@athena.mecaflu.ec-lyon.fr .

BElectronic mail: sarkar@ames.ucsd.edu cant chaI_Ienges, even for simpler flows, such as thpse around

®Electronic mail: cpantano@ames.ucsd.edu bluff bodies. These challenges have prompted vigorous re-
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search in both theory and application of LES, as discussed ihesieur** Bertoglio and Mathied® etc. In most cases the
recent reviews by Lesieur and hés! Moin,2 and Piomelli  Kolomogorov cascade theory is implicitly used to represent
and Chasnov. the SGS transfer. However, it is unlikely that, for routine
The large scales are obtained by introducing a spatiaéngineering applications, computational resources will allow
filter that operates on the flow fiel[dee Leonart] to remove  the fine resolution required for such an approximation of
the unresolvable, small scales of turbulence. Simple flowssotropic, homogenous small-scale turbulence to be accept-
such as homogeneous turbulence can be simulated with pable. Furthermore, small scales are anisotropic and inhomo-
riodic boundary conditions and the Fourier transform in suclgeneous imnonequilibriumturbulence with turbulence pro-
flows permits the use of the spectral cutoff filter. This spec-duction much larger than dissipation that occurs, for
tral cutoff filter is an ideal filter because it defines the grid-example, in rapid distortions or in the presence of suddenly
scale(GS) and the subgrid-scallSG9 components exactly; imposed body forces. For the more important applications
that is, the GS and the SGS are clearly separated in lengthhere the turbulence is inhomogeneous, fundamental studies
scale. On the other hand, in most practical computations, thare rare. Schumafhintroduced a two-part eddy viscosity
turbulence is not homogeneous and, consequently, filters imodel: ahomogeneougart that accounts for the “locally
the physical domain are required. Popular filters are the topsotropic” part of the SGS stress and mmomogeneoupart
hat filter and the Gaussian filter. However, such filtering re-to represent the anisotropy associated with the use of a large
sults in SGS motion, which involves a dominant contributionfilter size. The inhomogeneous part is directly related to the
of the small length scales as well as a smaller contribution oReynolds-averaged strain rate in the spirit of a classical eddy
the large scales; consequently, the unambiguous separatigiscosity closure. This model has also been used with some
of scales is not achieved. Thus, the subgrid model may nesuccess by Sullivaet al’ for LES of the planetary bound-
essarily have to depend on the type of the filter. The deperary layer. The SGS energy transfer mechanism in case of
dence of the subgrid model on the filter has been studied bwall-bounded turbulent flows has been investigated in detail
Piomelli, Moin, and Ferziget They showed that the subgrid by Domaradzkiet al!® Recently, O'Neil and Menevedl
model used in a LES must depend on the filter, for exampleperformed an experimental study of the SGS stresses in an
the scale-similarity model is not suitable for the spectral cutinhomogeneous turbulent wake. They found that the large
off filter. Recent developments in SGS modeling such as theoherent structures in the wake strongly affect the SGS
dynamic procedure introduced by Germano, Piomelli, Moin,stress. Thus, the local inhomogeneity of the flow and the
and Cabdt and the scale-similarity model of Bardina, Fer- associated coherent structures influences the SGS stress in a
ziger, and Reynoldslater refined by Liu, Meneveau, and wake and may require modeling.
KatZ and Salvetti and Banerj€erequire explicit filtering. In the present study we explore the implications of
With the necessity of physical-space filtering in inhomoge-physical-space filtering in SGS modeling of inhomogeneous
neous flows as well as the success and promise of the recefidws in both nonequilibrium and equilibrium turbulence. In
models that require explicit filtering, it is clear that the role order to develop an understanding in the context of mean
of filtering in SGS modeling deserves attention. statistics, which are of the greatest interest in engineering
The two primary effects that require modeling in LES of predictions, we use the Reynolds decomposition to split the
turbulent shear flows are the following: first, the SGS sheaflow into a mean and a centered fluctuating flow. The fluc-
stress whose gradient directly impacts the mean flow, antlation represents the turbulence. In the present paper we
second, the net energy transfer between the large and smalkplore the various consequences of LES of inhomogeneous
scales, which includes both the dominant dissipative effeciow on the filtering approach, on the energetics of the inter-
associated with the forward transfer from large to small edaction between the grid scale and the subgrid scale, on the
dies and the backward energy transfer from small to largeanisotropy of this interaction, and, finally, on the fidelity of
scales. The backward transfer is often small compared to thexisting SGS models. Section Il is a theoretical analysis of
forward transfer, except near solid walls. Using the assumpthe effect of the mean velocity gradient on the form of the
tion of isotropy of the small scales by analogy to molecularSGS stress tensor as well as its influence on the mean flow/
diffusion, one can introduce an “eddy viscosity” to take into resolved turbulence/subgrid turbulence interactions. An ex-
account the forward-transfer mechanism and can relate thaicit effect of the mean velocity gradient on the SGS stress
unknown SGS stress to the resolved GS motion. The welltensor resulting from physical-space filtering is found. By
known Smagorinsky mod®lis the most popular “eddy vis- analogy with the decomposition of the pressure—strain cor-
cosity” model for the unresolved small scales. When used imelation into rapid and slow partsee Lumle§®), we define a
its original form or its recent variantflike the dynamic rapid SGS stress tensor that depends explicitly on the mean
mode), or when used in combination with other models suchvelocity gradient and a slow SGS stress tensor that depends
as the scale-similarity model of Bardira al,’ the Smagor-  only on the fluctuating velocity. The rapid component reacts
insky model is probably the most popular choice in LESinstantaneously to a change in the mean flow; the slow com-
applications. ponent does not. The role of these components is analyzed
For the most part, the theoretical background for modelby considering their relative magnitude and their impact on
ing the effect of small scales in a LES application has rethe energy exchange between the mean flow, large-scale tur-
mained within the framework of homogeneous turbulencebulence, and small-scale turbulence. In Sec. Ill, DNS data of
Various theories of SGS modeling have been developed bthe temporally evolving turbulent mixing layer of Pantano
Kraichnan!! Leslie and Quarint? Leith,”® Chollet and and Sarké' is used to perform aa priori comparison of the
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various SGS stress tensors at a tensor léeeinponent by The application of the filtering operation to the mean and
componentand at a scalar level, that is, in the SGS energyfluctuating velocity, respectively, gives

exchange. The applicability of various SGS models to repre- (U =(US)+(u?) @
sent the intrinsically different effects of the rapid and slow : ! vo

parts of the SGS tensor is examined in Sec. IV. u'=u'~+u/~. (5)

Equation (5) implies that both the GS and SGS velocities
contribute to the ensemble-averaged mean. The presence of a
IIl. ANALYSIS OF FILTERING IN nonzero value of the mean SGS velocity;” ), is not desir-
INHOMOGENEOUS FLOWS able because it leads to a breakdown in the separation of
Central to the spirit of LES, a filter is introduced to scales between filtered and unfiltered quantities. Of course,

separate the large scales from the small scales of motion. LE{€1ing in spectral space with the cutoff filter would ensure
f<, equivalentlyf, denote the filtered value of the varialfle zero mean of the SGS velocity; however, inhomogeneity of

that nominally represents the large-scale variation. The filtef€ furbulence prevents the use of the cutoff filter. =
is usually definedLeonard) as follows: We now compare the effects of physical-space filtering

in a direction with constant mean velocity with that in a
direction with nonuniform mean velocity. From the defini-
tion, Eqg. (1), if the mean velocity is a constanfu;”)=0,

(1)  since the filtered value of a constant is just the constant itself.
f g(x)dx=1. Thus, for this situation, the subgrid component contributes
Q only to the turbulent fluctuation and filtering does not violate
the separation of scales. The top hat filter when applied to a

constant-gradient mean velocity also resultgug ) =0.
On the other hand, the application of the top hat filter to
an inhomogeneous directigwith a nonuniform mean veloc-
ity gradienj leads to a nonzero mean component in the SGS
velocity: (u;”)# 0. Thus, an important property of filtering in
- , e, the inhomogeneous direction is the introduction ofoazero
Ui (X):fﬂui(x )g(x=x")dx". (@3 eansGS velocity. Next we will examine the effect of

<, - S ) physical-space filtering on the SGS stress tensor.
Note thatu;”~ #u;" except when filtering is performed with a

spectral cutoff filter, which is an exact low-pass filter in
wave number space. The unresolved, subgrid-s€8@®S  B. Subgrid stress tensors
velocity, denoted by, is given by

f<(x>=fnf<x'>g(x—x'>dx.

In Eq. (1), g is the kernel function of the filter and the inte-
gral is over the domaifi) of the functionf.

In LES, only the filtered velocityu;~, also called the
grid-scale(GS) velocity, is explicitly computed; thus, from
Eq. (D),

Before discussing the effect of physical-space filtering

U =u— g (2b) on the SGS stress tensor, we recall the following definitions.
This separation of the scales depends strongly on the type of 1€ GS(grid-scal¢ stress tensor is given by
the filter that is used. In homogeneous turbulence, filtering Rﬁzufuf, (6)

can be done in spectral space with the spectral cutoff filter. . o ) .
Since such spectral-space filtering clearly achieves a globdfNile the primitive SGS(subgrid-scalestress tensor is de-
separation of scales, it has been popular in the analysis aniped by

development of SGS models as well as in the application of T =Uin—Ui<Uj< i (7)

LES to flows with homogeneous directions. o . .
In typical applications, flows are inhomogeneous in onel Ne adjective “primitive” is used because this subgrid-scale

or more directions; spectral-space filtering is not possible irptr€SS tensor is not identical to the one that appears in the

such directions. Furthermore, the SGS modeling approachES €guations, the commonly called SGS stress tengar,

may restrict the use of the spectral cutoff filter; the scale\Which is defined by

similarity model is one such example, as shown by Liu, Me- Tij :(uiuj)<_ui<uj< ) (8)
neveau, and KatZ.Thus, physical-space filters such as the

Gaussian filter and the top hat filter have become popular ifl "€ relation between these two tensors is a Germano identity
LES applications. at the no-filter levelzero leve] and one-filter levelf level):

We now discuss the consequences of physical-space fil- Tij :T§+|ij , (9)
tering.
9 in which I;; is the Leonard term:

A. The ensemble-averaged velocity
. - lj=(uu7) ==y (109
Ensemble averaging allows the definition of a mean ve- . )
locity (u;) and a centered fluctuating velocity , and the If the filter used is of the spectral cutoff type, the Leonard
following Reynolds decomposition ensues: term is a numerical error like the aliasing error encountered
in LES with the pseudospectral method and can be removed

u={(u;)+u’ . B easily.
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Another SGS tensor is the “resolved” part of the SGS be avoided. Although possible apriori tests of SGS mod-

tensor,L;;, given by els, this is not a solution in the application of LES to an
L = (USuS) < —u=u= (10 inhomogeneous flow, because the mean flow is not known in
" ! Peb advance. The rapid term is a consequence of filtering in the

The importance ofL;; stems from its use in the scale- inhomogeneous direction. In principle, filtering could be per-
similarity model for 7;; . formed only in the homogeneous directions, if they are
Note that usually only the deviatoric part of the SGSpresent, in order to avoid the rapid term. In practice, filtering
tensor,7j; — 74/3, is considered. The isotropic pari,/3, is s required in all directions, regardless of flow inhomogene-
absorbed into a generalized pressure. ity, because resolution down to the smallest Kolmogorov
scale that is required in the direction without filtering would

C. A new split of the SGS tensor into rapid and slow excessively increase the size of the computational grid.

components

The SGS tensor;; represents, in the spirit of LES, the o _
effect of the interaction between the resolved “large scales, D- Relative size of rapid and slow terms

ui", and the unresolved “small scalesyi” . To understand An estimate, based on a second-order Taylor series ex-
the effect of mean-flow gradients on the subgrid-scale stresgansion, of the relative size of the slow and rapid terms is
7ij» we use the Reynolds decomposition of the velocity intopresented below for the top hat filter. It should be noted that
mean and fluctuating components. the estimate is approximate because a low-order Taylor se-
The SGS tensor;; obtained after using Ed3) for the  rjes expansion can have large inaccuracy in estimating local
velocity can be split into two parts: mpid part that explic-  yariations in the velocity fluctuation. DNS will be used later
itly depends on the mean flow and a remainsigw part  for 3 more precise, quantitative comparison.
The term “rapid” is used by analogy to the terminology  ysing the Taylor series expansion of the filter introduced
introduced by Lumle$f in the context of Reynolds-averaged py Clark, Ferziger, and Reynofisin their derivation of the

modeling, where the component of the pressure—strain terfradient-type subgrid model, E(L) can be approximated by
that explicitly depends on the mean velocity gradient is re-

. . 2
ferred to as the rapid part and the remainder as the slow part.

Ak

Thus, 7;; is split as follows: FEe0=f0o+ 24 Ad00+0(a%, (133
7= Tﬁ?api% Tﬁ'OW, (1)  which leads to

where AR, 4
R 129 700 == 5 () +O(A%). (13b

J
TiFj%apid: (UL == (UL + (Ul (up) == uf ~(u7) Note that the first. de'rivat?ve drops out of the' rhs of Etsa
since a symmetric filter is assumed. Hefg, is the spatial
+ (U (up) = —uf ~(u). (12 width of a symmetric filter in thésth direction ands? is the
second-order partial derivative in th direction. Equation
Q,S) is valid for both Gaussian and top hat filters.
The mean subgrid variablg ~) is then

The slow SGS tensorrﬁ'o‘” is always present in LES, irre-

spective of the presence or absence of a mean flow, and i
effect and modeling has been discusded example, Leslie

and Quarinit? Kraichnant! Chollet and Lesieut* and Ber- A
toglio and Mathiett® among others in the case of isotropic (f)x)=- 24 (F0)+ O(A%). (130

or homogeneous turbulence. Thapid SGS tensorr] 2>

arises only if the filtering is done in a direction wherg) is It should be noticed that the size of this subgrid mean value
not constant. It should be noted that, distinct from this ex-depends on the second derivative of the mean profile, which
plicit contribution of the mean-flow gradient to the subgrid- is related to the local curvature.

scale stress througtf;®“, there would be an implicit effect For the two subgrid-scales stres§gsand 7;; , the cor-

of the mean flow onr", which could require additional responding approximate expressions are

modifications to models based on homogeneous isotropic A2

turbulence when appllgd tq inhomogeneous flows. Tij=— —k[aﬁ(uiuj)—2(&kui&kuj)]+O(A4), (143
The nature ofr};**is different from that ofr;*". For 24

example, even when the flow is laminar, the first line in Eq. A2

(12b) persists in the inhomogeneous direction while the two =+ T;ﬁkui&kuﬁo(ﬂ)' (14b)

others vanish. Furthermore, as will be shown in the next

section, the magnitude oﬁﬁa”id depends on the gradient of The mean value of the rapid SGS streé jaPiC§, can be

the mean velocity. Therefore, the time scale of its response tgasily evaluated since it contains only the mean velocity gra-
mean flow changes is short and, as will be shown, its magdijent. We have

nitude with respect to the slow part is larger for rapid distor- 5

tion flows. If the ensemble-averaged field is subtracted be- Rap%: Aj (159

fore performing filtering, the presence of the rapid term can Tij 12 Hui) iU+ O(A%).
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Neglecting theD(A?) term implies that, to leading order, the <Tﬁapif§
rapid SGS stress depends on the square ofrtban velocity 75'0‘"’> =
gradientand varies ad\?. Similarly, "

-l

AZ
Tl Tz)- (169

Herel is a characteristic integral scale of the turbulence.
SinceSl/u=0(1) in shear-driven turbulence, the rapid part
can become comparable to the slow part when the filter size
increases, such that/l =0(1). Themagnitude of the rapid

. . 4 .
The grrlor mcurzred. by neglecting tff(lA ) tﬁrm N Ed. component is even larger when the turbulence is in nonequi-
(15D is larger than in Eq(158); nevertheless, the estimate is librium with Sl/u>0(1).

appropriate for a sufficiently small filter size.

As an example, consider the DNS test case used in thg The energy transfer mechanism between grid and
present study(the temporally evolving mixing layer
dlu;)=S, fori=1 andk=2, and zero otherwise. The re-

sulting approximation for the mean rapid SGS stress is then It iS important to identify clearly the energy transfer
mechanisms between the different scales of motion and en-

sure that the model for the subgrid-scale tensprepresents

these mechanisms. Let us first recall the interaction between
mean and fluctuating fields in the context of the Reynolds-
and, assuming an isotropic filter, for the mean slow SG&yeraged approach. The equation for the kinetic energy,

A
7o = o (i Ay )+O(AY). (15b)

subgrid scales

A

2
i 2
(1Y = 155616+ 0(A"), (150

stress: (u;)?/2, of the mean motion is
AZ ’ ' <U'>2 (U‘)Z ’oor
(75" = 5 (ol auf) + O(A%). (150 atT'+<uj>aj(T' =(u/u/}(Sy)
The only important mean rapid SGS stress component is —pres term-visc term,
the 11 component, given by (173
4 A? while the equation for the turbulent kinetic energy. ?)/2,
)= 5§+ 0(A%). (158 q )

12 12
The scaling given by Eq15e is checked later in the results . /Y u
¢ 2 +<UJ>&] + 07]

I
section. From this simple example of the temporally evolv- 2
ing mixing layer, it is clear that the rapid component has an
anisotropy that is directly related to the mean-flow gradients.
How large is the rapid term relative to the slow term?Here S; is the rate of strain tensor argj is its fluctuating
When the filter size is small, Eq15h) applies, and after part. The coupling between mean and fluctuating kinetic en-

<)

=—(u{uj}(S;)—pres term-visc term. (17b

using(dyu; du; ) =O(e/v), it follows that ergy is by the production term; (u; u/ (S;;), denoted byP.
i It is usually positive, draining energy from the mean flow
Rapi 2 2
<Tié C5= (E) =O(V—§E) _ i) (U_Z) (E) into the turbulence. The third term of E¢L7b), which can
(7" € u- e Re,/\u”/\e be rewritten agu; u;sj;), represents the self-interaction be-

(16a  tween various scales of turbulence.

Now consider the energy transfer mechanisms in LES.
We follow the approach of Haertel, Kleiser, Unger, and
Friedrich?® who consider interactions between the kinetic

Here,U denotes the mean velocity differeneaegdenotes the
rms value of the turbulence; the turbulence production ha

been estimated by=0(SW) and the Reynolds number, X ) )
Re,=Us5, /v, is defined using the vorticity thickness that is €N€rgy associated with the ensemble-mean grid-S@

estimated by, =0(U/S). Thus, for equilibrium turbulence velocity, the fluctuating GS velocity and the fluctuating SGS
with P/e=0(1), and at zhigh Reynolds number, the rapid velocity. From the transport equation for the grid-scale ve-

part is small compared to the slow part for a sufficientlyloc'ty’

small filter size. However, for nonequilibrium turbulence U+ &jufuf =— 07— P</p+ vdj us, (19

with P/e>0O(1), therapid part may become comparable to . . - ) .

the slow part. in which P~ is the filtered pressure and does not include the
There is another situation where the rapid part may be ofracery/3, it is straightforward to derive transport equations

B . . - < 2
importance. In practice, the filter size in LES of complex 0f the GS mean and fluctuating kinetic energigs; )“/2

<2 . :
flows may not be much smaller than the integral length scale?nd (Ui ~)/2, respectively. The role of the SGS stress in

In such a situation a low-order Taylor-series expansion of th&1€S€ transport equations for the kinetic energies can be bet-

velocity fluctuation does not apply, and therefore Etbd) ter understood by splittiqgij into a mean and fluctuating _
must be replaced by component. Then the primary energy transfer term associ-

ated with the SGS stress; (7;;Sjj), also called the SGS
(Tﬁ"’ =0(u?), (16b) dissipation, is split into a mean and fluctuation part:
which leads to (iS5 = (NS +(7hisl;"). (19
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Here,(S;) ands/;~ are the mean and fluctuating parts of the productionP; the part,P—<rﬁ'°‘”}<$T), which is a rewritten

grid-scale rate of strain tensor, respectively. form of the first term in Eq(20b), supplies energy to the
The equation for the mean GS kinetic energy is grid-scale fluctuations while the remaindévﬁ"’“’)(&f), is
(u%)2 ()2 transferred to the subgrid-scale fluctuations. The third term,
9— +<u-<>a,-( ! ) (7)) ’j<>, in Eq. (20b), which appears only in the fluctuating
2 . 2 GS energy equation, represents the nonlinear interaction be-
R TRTN - tween the GS and SGS parts of the turbulequally, for-
=(uj Yj ><S"J >+<T”><S“> ward cascade; sometimes, backward transfer or backgcatter
+turb transp termtpressure termvisc term, However, if we rewrite this term as
(203 <Ti,j Sirj<> :<Ti/jRapicgirj<> +<7_ier|0WSi/j<>, (22b)
while the equation for the turbulent GS kinetic energy is it is clear that there is a component, the rapid part, which
u/<2) 1<2) contains both meajdue to the presence of mean velocity in
g—r" +<u,<>(;j<'_) Ti’jRap'd; see Eq(21b)] and fluctuating velocities, in addition
2 . 2 to the slow component, which involves only the fluctuating

_ —(uf'u")<s<-)+<r-’-s-’-<>—(u-<'u-<'s.’.<> velocity. The ternKri’jRap'dsi’f) represents giirect coupling .
) J =1 IR between the mean velocity and fluctuating SGS velocity,

+turb transp term-pressure termrvisc term. which influences the fluctuating GS energy. DNS will be

used to check Whetheﬁrri’jRap'dsi’f) represents forward trans-

(200 fer or backscatter.

In order to simplify the interpretation of the above equations,

we do not consider the last three terms: the turbulent trans-

port, the pressure term, and the viscous term. Ill. EVALUATION OF THE RAPID AND SLOW SGS

In order to better describe the effect of rapid and sIowTENSORS IN'/A TURBULENT MIXING LAYER

components of the SGS stress in the energy transfer process, Results from the DNS of the temporally evolving, turbu-
we will apply the decomposition |ntc2)3mean and fluctuatinglent mixing layer by Pantano and Sarkaare used for clari-
components proposed by Haeretlal= to both, rapid and fying the relative importance of the rapid and slow parts of

slow components. Thus, the SGS tensor. A dataset with low convective Mach num-
Rapid__ Rapir§ 4 /Rapid ber, M.=0.3, is used so that compressibility effects can be
7ij =(7 j 7ij
neglected.
and A priori tests to evaluate the rapid and slow SGS tensors
Slow_ / _Slo 1 Slow are performed on a tensor level by comparing the magnitude
Tij = < Tij VV) + 7 .

' of the mean and rms values of the different directional com-
From Eq.(12b) it is clear that the mean rapid part is given by ponents, as well as on a scalar level where their relative

Rapid, _ /NN S <\ S 21 contributions to the energy transfer between grid scales and
{7 D= ((uu) = (u N, (213 subgrid scales are obtained. The tests are performed with
while the fluctuating part is DNS results at an early time before the turbulence is fully
» Rapi , ' , , developed and at a later time. Ttop hatfilter is used. Note
RO (07 ;)= =] () + (U] ())<= (). P e

that the filter is appliedsotropicallyin all directions in thea

(21b priori test. The influence of the filter size is also investigated.
Similarly, the mean part of the slow SGS stress is The filter size is set ta\{/A=2 and 4 for the early time
(Tﬁ'%:((u{u{f—U{<Uj’<>, datasgt and\f./A=2., 4, 6_, and 8_ at t_he Ia_ter time. Hedeis
the grid spacinguniform in all directiong in the DNS. The
while the fluctuating component is given by temporally evolving mixing layer is inhomogeneous in a
i,jsmw: Tﬁ'o‘”— <Tﬁlow>. single direction along the transvergecoordinate. Conse-

quently, ensemble-averaged statistics are functions of only

The first term on the right-hand side of Eq203 and  they coordinate and can be obtained by averaging the instan-
(20D, which is analogous to the production tefmin the  taneous flow ovek-z planes.
Reynolds-averaged equatiori$7/a and (17b), transfers en- .
ergy between the mean and fluctuating parts of the GS kit The turbulent mixing layer DNS
netic energy. The second ten(n—,ij><S,T>, on the right-hand The three-dimensional, unsteady Navier Stokes equa-
side of Eq.(21a, is an interaction between the mean SGStions were numerically solved by Pantano and S&fkar
stress and the mean grid-scale motion; the fluctuating gridinvestigate a temporally evolving turbulent mixing layer.
scale motion is not involved. This term can be rewritten as The initial mean velocity profile isU(y)=(AU/2)tanh

<\ _; _Rapid /o< Slo < (—=y/26,,); where AU=U,—U, is the velocity difference

(mg} (ST =(rHP NS+ (NS, (223 | otween upper and lower streams, afydis the momentum
to isolate the effect of the rapid term. The slow term in Eq.thickness. The initial fluctuations are broadband with an iso-
(229 corresponds to the term identified by Haesehl?as  tropic turbulence spectrum in the horizontal directions, and

representing the subgrid contribution to the total turbulenceurbulent kinetic energy that varies in the transvershrec-
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tion as k/AU%xexp(—y%25%). A low-Mach number case
with convective Mach numbeiM -=0.3, from the DNS is
considered here. It is known from experimental data that the Qm 010 f---------
shear layer behavior &l -=0.3 deviates little from the in- >
compressible case and, therefore, Mhg= 0.3 dataset can be
considered as effectively incompressible. The initial Rey- 0.06 f-mmmmmmmedez oo
nolds number based on the initial vorticity thickness is,Re
=AU4, o/ v=160. A fourth-order compact finite difference
approximation with a fourth-order Runge—Kutta low storage 0.00 .
method for the time advancement is used for the numerical ) -100 - Vi)
solution. A uniform 12&128x128 grid is used. "

A summary of pertinent DNS results is provided here.FIG. 2. (@) Profiles of the streamwise turbulence intensity at time step
T oo o e T i i S 1 e 20, e o s v s Troy &bt o
Flg' L .After an initial transient, the shear Iaye.r evolves In(=R265.00,t’.r =1089. Symbols denote experimental data from gell and Mehtz
time with a linear growth rate as observed in NUMerousgey. 24.
physical experiments. In the laboratory, the mixing layer
grows in the streamwise direction with the following
growth rate law(it is customary to use the vorticity thick-
ness,5,) applicable to the self-similar regime, averaged velocity(U)(y), from the total velocity field. Fi-

nally, the difference between the total and the slow SGS

dd, /dx=Cs(Uy—U2)/(Us+Uy), stresses gives the rapid SGS stre§8"°. Thea priori tests
with a consensus of experimental data givibg=0.16. As-  are carried out at time* =236 andt* = 1089, corresponding
suming a convection velocity ofd; +U,)/2, the temporal to an early and later stage of the mixing layer, respectively.
growth rate becomes Here, the normalized valug =AU t/é,,, is used for the

time variable. The Reynolds numbers based on a streamwise
dé,/dt=0.081U. micro-Taylor scale and rms velocity are 108 at the early

The observed growth rate in our DNS @&d,/dt  stage and 142 at the late stage. Different wave number posi-
=0.07AU, which is in good agreement with the above ex-tions corresponding to different filter sizes used are indicated
perimental result. Figures@ and 2b) show profiles of the in Fig. 3@ (for early stage and Fig. 3b) (for later stage
turbulence intensities at a late time in the DNS which arethat show centerline, one-dimensional specka;(k,,t*),
seen to be in good agreement with the experimental data dér each velocity component.

Bell and Mehta* At the early time, coherent spanwise rollers and braids
are clearly present, as shown in Fig(ldft picture, which
could influence the mean/grid-scale/subgrid-scale interac-
tions, while at the later time, these coherent structures are not

The total, slow, and rapid components of the SGS tensoas evidenisee Fig. 4, right pictupeand there is significant,
are computed as follows. First, the total SGS tengpris  small-scale, three-dimensional turbulence.
obtained bysﬁrvcvacessing the whole velocity field. Second, the Normalized profiles are obtained by nondimensionaliza-

slow part, 77", is computed by processing the centeredtion with the centerline value of appropriate DNS data, at the

fluctuating velocity obtained by subtracting the mean, planesame time step. The subgrid stresses are normalized with

1
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w
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B. Magnitude of slow and rapid SGS tensor
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FIG. 3. (a) One-dimensional spanwise spectrubuy;(k,,t*), fori=1, 3, at

time step=500, t*=236. (b) One-dimensional spanwise spectrum,

Eu;(k,,t*), fori=1, 3, at time step2500,t* = 1089.

Shao, Sarkar, and Pantano

shear stress with the Reynolds-averaged turbulent shear
stress.

1. Tensor level

In order to compare the magnitude of the slow and the
rapid tensor components, we use ensemble averaging to get
the mean and fluctuating components,

Tij:<Tij>+Ti,j .

In the present temporally evolving mixing layer, since the
mean flow varies only in thg (equivalentlyx,) direction, it
is clear from the approximate expression of the rapid SGS
stress(rﬁa""‘}, given by Eq.(150), that the dominant part of
this tensor is the 11 component. Therefore, when discussing
the rapid SGS stress, attention is focused on the behavior of
the (752PY4 component. A comparison with the slow SGS
stress is done with the corresponding 11 compor(ei").
In addition, the anisotropy of these two tensors is also dis-
cussed.

a. Mean SGS stress magnitude and its anisotropjg-
ures %a)—(b) show the behavior of the 11 component of the
mean rapid and the mean slow SGS tensor§2*% and
(731°% for the filter size varying from two to four times the
grid size, at the early stage of the development of the mixing
layer, t*=236. Both increase as the filter size becomes
larger. Compared to the slow paftR2"9 is approximately
three times larger. This is expected at the early stage: first,
the turbulence is still evolving, the ratiB/e~10 is large
[see Eq.(163]; second, there is strong local inhomogeneity
due to the presence of large coherent struct(ses Fig. 4.
These coherent structures induce locally large curvature of
the mean flow, which, in turn increases the rapid part of the
SGS stress. In our case, the mean velocity profile is obtained
by using a “plane averaging” procedure. The important ef-
fect of the local streamwise inhomogeneity 6ri2P% is

twice the turbulent kinetic energy. The mean subgrid energyeduced by averaging in the streamwise direction over mul-
production(or dissipation by the mean flow as well as the tiple periods of the coherent structures. If “phase averaging”
fluctuating subgrid energy transfer are normalized with thes introduced, such as that used by O’Neil and Menev&au,

Reynolds-averaged turbulent dissipatien and the SGS

16

14

12

UL LEREN REREE EEERE LR

-
B
[

to obtain the local streamwise inhomogeneity, then the effect

FIG. 4. Vorticity contours in the-y plane. Left: time step500,t* =236; Right: time step2500,t* = 1089.
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of coherent structures o(nrlap'“} could be obtained. How- den expansion flow, more components of the mean rapid
ever, we do not consider coherent structures in more deta$$GS stress would be nonzero and could have important con-
herein. sequences on the mean flow development. We will see later
The behavior of Tlap'“} [rescaled with A;/A)?] at a that the anisotropy of the rapid part results in a more com-
later stage of the mixing layet} =1089, is given in Fig. plex energy transfer mechanism between grid and subgrid
6(a). The scaling law, Eq(15e), for (rRap'“} is clearly ob- scales in the mixing layer.
tained in Fig. §a). The magnitude of the rapid part is small, It is of interest to check the anisotropy Qfﬁ-"o‘"’). Fig-
but not negligible, compared to the magnitude of the slowures &a)—8(b) show all components, at the early and later
part, <TSIOW> [see Fig. @)]. The small magnitude of the stages, with the filter size set to twice the grid size. At the
mean rapid part is expected, since at this stage, the flow isarly stage, the anisotropy is significant in both normal and
fully developed with equilibrium turbulence. shear stresses. The 12 shear component has the same order of
Another important fact is the strong anisotropy of the magnitude as the diagonal components, while the two other
mean rapid SGS stress, as shown in Fig),Avhere( rFfap"§ shear components, 13 and 23, are nearly zero. Since the tur-
is plotted (caseA;=2A, at an early stageand Fig. 7b) bulence is still evolving in this flow(rﬁ"0 is substantially
(caseA;=2A, at a later stage In accord with the approxi- influenced by the mean flow; this is an implicit effect of the
mate expression, Eq15¢) for (TR""”"§ the only significant mean flow gradient that is not related to physical-space fil-
component of the rapid mean SGS stre{sﬁap' , isthe 11  tering. At the later stage, when the turbulence is fully devel-
component. All other components are negligibly snedim-  oped, the three diagonal components are more isotropic and
ponents 13, 23 are not plotted, they are of the same prderare nearly equal, as shown in Figtb8 Among the SGS
The sole importance of the 11 component of the mean rapidhear stresses, the 12 shear stress is dominant and is approxi-
SGS stress in the temporally evolving mixing layer is a di-mately 25% of the diagonal components. The two other off-
rect consequence of the simplicity of this flow; only a singlediagonal components remain negligible. In Fi¢c)&he slow
component, the 12 component of the mean velocity gradien8GS shear stres@rf'zo‘”}, normalized by the value of the
tensor is nonzero. In a more complex flow, such as the sudnean shear stregsi;u,) at the centerline, is plotted at the
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0.30

later stage and for different filter sizes. The importance of the 0.20

SGS shear stress is clear; it varies approximately from 5%
(A;/A=2) to 40% (A;/A=8) of the Reynolds-averaged
shear stress when the filter size is increased. Thus the filtered
scales are clearlgotisotropic, as evidenced by the Reynolds
shear stress associated with these scales. The anisotropy in-
creases with filter size. Significant anisotropy of the SGS
motion is to be expected at the filter cutoffs used in practice. 010 ‘ . .
Indeed, if the subgrid scales were perfectly isotropic so that %60 40 20 00 20 40 60
the Reynolds-averaged subgrid shear stress was zero, the in- (© Vo0
ﬂue.nce_Of the subgrid stress on the mean VEIO.City fiEIC1:IG. 8. (a) Normalized mean SGS stressrﬁ"’W/Zk), at time t* =236,
(which is thr_OUQh the term?i<7ij>) WOUId_ be zero n th? A¢/A=2. (b) Normalized mean SGS stres¢s;°¥2k), at time t*
turbulent mixing layer. Furthermore, physical-space filtering,— 1089, A;/A=2. (c) Normalized mean slow SGS shear stress,
since it does not perform a strict separation of scétesre is  (7°")/(ujus), at timet*=1089,A;/A=2, 4, 6, and 8.
an additional smearing of scajesadds to the anisotropy in-
duced by the mean flow. Since the nonzero SGS shear stress
is important because it directly influences the mean flow, weenergy transfer between scales. In the present case since a
will check later as to whether the usual SGS models camspatial filter is used, the fluctuating part of the SGS motion
accurately capture the SGS shear stress. contains explicitly the mean flojsee Eq. 1&)]; therefore,

b. Fluctuating SGS stress magnitude and its anisotropythe energy transfer could deviate from isotropy.
The rms value of the SGS tensor is closely related to the Figures 9a)—9(d) show the rms value of all components
behavior of the small scales. Usually, in the theory of SGSf the rapid and slow SGS stress tensor, at both, early and
modeling, the small scales are assumed to be isotropic whidate times, for the case with;=2A. At both stages, the
allows the use of the isotropic relationship concerning theapid SGS part shows large anisotropy; only the 11 and 12
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components are nonzero. At the early stage, all componenifon-Karman stregtstrongly correlate with the SGS stress
of the rms slow SGS stress are of the same order, but are nahd make the isotropy of the subgrid scales doubtful. We
isotropic and are smaller than the corresponding value of theonfirm here that mean flow gradients can lead to anisotropy
rapid SGS rms. At the later stage, the rms of the normabf the SGS stress tensor. In the later, fully developed stage,
components of the slow SGS tensor are equal and the rms afthough the mean rapid part is small, the rms of the rapid
the shear components are also equal. The rms value of thgart is substantial suggesting that the rapid part could have a
rapid SGS is smaller than that of the slow component, but isignificant contribution to the SGS energy transfer. In the
significant: 7,74 is nearly 35% of ;5" and 7;%%%is  next section, the influence of the anisotrdjiy both normal
about 30% ofr;5>°". The rms of the individual components and shear componeitsf the SGS stress and the role of the
of the total SGS stresgapid+slow), even within fully de- rapid SGS stress with respect to the energy transfer is exam-
veloped, equilibrium turbulenc@ later stagg are unequal. ined.

Once again, the influence of the mean flow clearly ap-
pears, and is strongest at the early stage.

c. Summary. As long as the mean flow has a nonzero
gradient and a spatial filter is used, there exists a rapid com- As pointed out in Sec. Il E, the contraction gf by Sj;
ponent of the SGS stress that cannot be ignored. In the mixgives the energy transfer between different GS and SGS mo-
ing layer, the mean rapid component is especially large durtions. Here, we compare the rapid SGS contribution to the
ing the early stage of the evolutignompare Fig. &) with slow SGS one. Recall that a positive value of the energy
Fig. 5b)], in agreement with the approximate scalings de-transfer term,—(rjisfj), implies dissipation or forward
rived in Sec. IID. The rapid component is strongly aniso-transfer of energy while a negative value refers to backward
tropic in response to the mean flow. This result is consistentransfer of energy. Recall also that the spherical tensor is not
with and helps explain the recent finding of O’Neil and subtracted in our case. First, we consider the case at a later
Meneveau? In their study of the SGS properties in a high- stage,t* =1089. Since the turbulence is fully developed at
Reynolds number turbulent wake using a Gaussian filter irthis stage, it is easier to interpret the energy transfer mecha-
physical space, they showed that coherent struct(itess nism. At the early stage, since the turbulence is in a strongly

2. Energy transfer analysis
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by the dominance of its contribution to tkie; <) equation.
nonequilibrium state, the results are more difficult to inter-A comparison of the values of the slow and rapid SGS dis-

pret. However, notable features are identified. sipation within the(u,~") equation shows that they are of

a. Later stage,t=1089. Figures 10a)-10b) show the  the same importance. The subgrid dissipation terms in the
subgrid energy production by the mean flow(7;;)(S}),  GS shear stresses are, however, small enough to be neglected
normalized by the turbulent dissipation for two filter sizes:(ﬁgure not showp for both rapid and slow components.
A¢/A=2 and_ 8. In parallel t_o the observation at the_ tensor  Once again, even for fully developed turbulence, the
level comparison, the contribution of the mean rapid partrapid part of the SGS stress is important because it anisotrop-
—(7®%(S7), is negligibly small compared to the Slow jcally alters the energy transfer between grid and subgrid
part, —(7;/*")(S;). But the contribution of the fluctuating scales. Thus, the usual isotropic assumption for the subgrid

rapid part of the subgrid dissipation,( 7/**"%/,~), normal-  dissipation fails. We return to this point later in the section
ized by the turbulent dissipatiog, can be substantial, as on subgrid modeling.

shown in Figs. 1@a)-11(b) (A{/A=2 and §. Furthermore, b. Early stage,t=236. Since the turbulence is within a
the relative contribution of the rapid part increases with filter«pjrth” stage at t* =236, the energy transfer mechanism is
size. more complicated. The filter size used is twice the grid size

As pointed out in the previous sections, the rapid SGSn the following results. Figure 13 shows the respective con-
stress is highly anisotropic; the influence of its anisotropy ontributions of the rapid and slow components to the SGS en-
the grid/subgrid energy transfer is evaluated by plotting thesrgy transfer—(7;)(S;}). It appears that the contribution of
terms—(;s/~) (no summation on indei>§2, which occur in - the mean rapid part is again small, although it was shown in
the GS diagonal Reynolds stressdsi/("' ), for i=1-3) the section describing tensor-level resultompare Figs.
equations. Figures 18-12b) show the slow and rapid SGS 5(a) and §b)] that the 11 component of the mean rapid SGS
contributions, respectively, at late time and ff/A=8.  stress is larger than the corresponding slow part and its en-
The slow SGS dissipation is nearly isotropic. In contrast, theergetic contribution can be neglected. This is not surprising,
high anisotropy of the rapid SGS dissipation appears clearlgince the mean flow is a simple shear flo{§;;)~0 and,
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FIG. 12. () Subgrid energy transfer(7};

1SV <) € in (u'=") equations,
fori=1-3, att* =1089,A; /A =8. No summation on indexis implied. (b)

Subgrid energy transfer (/%% <)/ in (u/ <) equations, foi =13, at

t*=1089,A;/A=8. No summation on indekis implied.

consequently, the contribution of the 11 component to
—<r,—i>(8ﬁ) is negligible. It must be emphasized that, in
other cases, like the near-wake of a bluff body or the flow
with streamwise contraction, the production by the mean

rapid SGS stress is potentially important.
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The subgrid energy transfer; (7;s/;~), in each diago-
nal component of the GS Reynolds stress ten$oif<(2>) is
illustrated in Fig. 14a) (slow SGS and Fig. 14b) (rapid
SGS. First, we observe significant anisotropy, even in the
slow SGS dissipation. Second, the rapid and slow contribu-
tions are of the same magnitude. Third, the contribution of
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the rapid stress represents a back-trangfer negative value SGS stress. Instead model validation is performed with re-
of _<Tj,isi,j<>) in the<u§<2> and the(ufz) equation. Re-  Spect to t_he rapid and slow components of t_he SGS stress.
garding the shear stregsi; ~u5~), a similar back-transfer is Attention is focused on whether the anisotropic nature of the
observed on both the rapid and slow part, as shown in Figehergy transfer mechanism and the high value of the SGS
14(c). Such a complex transfer mechanism is difficult to in- Shear stress associated with the limited resolution possible in
terpret but may be related to the presence of vortex breaKractical LES can be correctly captured by the two models
down during the transition to three-dimensional turbulencestudied here.

as well as to the simultaneous presence of large coherent

structures. To understand these particular features, we need sybgrid models

to investigate the transition to turbulence, but this is beyond

the scope of the present study. The Smagorinsky model represents the deviatoric part of
c. Summary. The presence of the rapid SGS stress altergij @S follows:
the subgrid transfer in an anisotropic fashion. The anisotropy Til g™ 2,,{3: , (23

is related directly to the mean flow, with the rapid part pri-

marily contributing to the streamwise component of the subwhereS; is the strain rate tensor of the resolved grid-scale
grid transfer in the shear layer. The rapid component has &otion andv, is an “eddy viscosity,” defined by
dominant influence at an early time when the turbulence is in _ N2 [Ae<a<

nonequilibrium. In the case of later-time, equilibrium turbu- n=(CADN2S) S (24
lence, the rapid contribution to the SGS energy transfer inHere,C; is a constantits value is usually about 0.1,5and
creases with filter size and the rapid contribution to theA’ denotes an “effective” filter size. This model correlates
streamwise SGS transfer is comparable to that of the slowoorly with the SGS tensor, as noted in the literature, but it is
term [compare Fig. 1®) with Fig. 12a)]. In the next sec- purely dissipative and, thus, assumes one of the essential
tion, when we evaluate popular subgrid models, attention iunctions of a SGS model,

focused on the ability of these models to account for the  The scale-similarity model is defined as:

anisotropy induced into the grid/subgrid energy transfer by

=gl = U< —uzus
the rapid SGS stress. 7iy = ek = e (Uup) T =g, (25
The second filtering operation is done with a “test” filter
IV. EVALUATION OF SUBGRID MODELS that is the same as the original “grid” filter. The adjustable

constant is chosen to ke=1 here. The rapid and slow com-

From the discussion of the previous sections, it is cleaponents of the modeled stresses will be compared with cor-
that, through the rapid part, the mean velocity gradient diresponding exact values from the DNS. The slow part of the
rectly affects the SGS stress tensor subgrid stress tensor agB#hagorinsky model is obtained by using the fluctuating
the associated energy transfer to the small scales. The quesrain rate instead of the total strain rate on the rhs of Eq.
tion that then arises is whether SGS modeling has to explict23), as well as on the rhs of Eq24) when calculating the
ity account for the effect of the mean velocity gradient required eddy viscosity. The slow part of the scale-similarity
manifested by the rapid SGS stress. Here, we evaluate thaodel is obtained using the fluctuating velocity instead of
ability of existing SGS models to represent the distinct propthe total velocity on the rhs of Eq25). The rapid part of
erties of the rapid and slow parts of the SGS tensor. Th@oth the Smagorinsky and scale-similarity model is obtained
comparison is limited to two popular models in LES appli- by subtracting the slow part from the model prediction for
cations: the eddy viscosity Smagorinsky model and the Galthe total SGS stress.
ilean invariant scale-similarity model. There is no separate
term explicitly depending on the mean velocity gradient, . .
though there is an implicit dependence in both models. AI—B' A comparison with DNS results
though, as pointed out previously;*°the Galilean-invariant At the early stage, since the turbulence is not fully de-
scale-similarity model has a high correlation with the SGSveloped, the Smagorinsky model coefficient is not well de-
stress and also allows backscatter, its use in a practical corfined. Therefore, a quantitative comparison with the Smago-
putation can lead to numerical instability. Therefore, a com+insky model is not performed with the early-time data. For
bination of these two modelghe mixed modelis used in the scale-similarity model, a comparison is done using both,
practice with the Smagorinsky component added for numerithe early- and late-time datasets. The important yardsticks
cal stability to the scale-similarity model. However, it is not for the comparison are the following: first, the value of the
clear if there is an additional physical reason for retainingSGS shear stress, and second, the anisotropic energy transfer
both scale-similarity and eddy viscosity components in aetween the mean velocity/grid-scale fluctuation/subgrid-
SGS model. scale fluctuation.

In accord with previous investigations, our study also Figures 1%a)—15d) show the modele¢both Smagorin-
gives a high value of the correlation coefficients between theky and scale-similarity modgland exact values of the total
exact SGS stress and the scale-similarity madébut 0.9  SGS shear stresér;,), normalized by the centerline value
for both rapid and slow componentsVe do not present of (ujus), for A;/A=2, 4,6, and 8, at a late time. It appears
detailed results about the correlation coefficients at the tensdhat the Smagorinsky model largely underestimates this
level between the model predictions and exact values of thquantity, and better agreement is obtained with the scale-



Phys. Fluids, Vol. 11, No. 5, May 1999 Shao, Sarkar, and Pantano 1243

0.400 T T T T T 0.40 T T T v
© Exact o Exact
—— Scale-similarity Scale--similarity
0.300 | ---- Smagorinsky 0.30 1 -~~~ Smagorinsky
OoooooO
A, 0200 | i A o020}
o E2
? 3
A A,
¢ 0.100 4 ¢ 010
v v
0.000 0.00 {
-0.100 ' ' : : : -0.10 ‘ : : : :
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 ~-6.0 ~4.0 -2.0 0.0 2.0 4.0 6.0
(@ ¥/8, () (c) V8,0
0.40 T . . T T 0.40 T
QO Exact
© gxaf‘ milriy —— Scale-similarity
cale-similari - --- Smagorinsk|
0.30 - - - - - Smagorinsky 0.30 - gorinsiy
A, 020 - - A, 020
) =
k4 ky
A, A,
.\-;" 0.10 n\-/-“ 0.10
0.00 0.00
-0.10 L L L L L -0.10 L L L L |
6.0 -4.0 2.0 0.0 2.0 4.0 8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

(b) vI5, @ ¥/5,(0
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comparison between modeled and exact total SGS shear stress, &t #h@89,A;/A=8.

similarity model. However, when the filter size increases,Thus, it appears that the rapid part of the energy transfer is

differences with the exact DNS results also increase. It apbetter represented by the scale-similarity model while the

pears that, with decreasing LES resolutienin Eq. (26)  Smagorinsky model is better for capturing the energy dissi-

would have to be progressively larger for the scale-similaritypation associated with the slow part.

model to match the exagtr;,). This is consistent with the At the early stage, the anisotropic energy transfer is

recent study of Cook® These results are also consistent with more important due to the large rapid SGS stress. Figure

a conclusion from Vremaet al?® in their LES study of the 17 [respectively,(17b)] shows the rapid(respectively,

turbulent mixing layer, that the mixed modskale similarity I <2 , <2 .

plus Smagorinskygives a better shear layer growth rate thanSIOW) contributions to the(u;” ) and {u;" ) equations,
while Fig. 17c) shows the rapid and slow contributions to

the Smagorinsky model by itself. . . e
Figures 16a) and 16b) evaluate the ability of the scale- theltra_nsport 3?”2“?2 E); thg GS ShiaLISt'(Tﬁs uh2 ) fpﬂ
similarity model to represent the rapid and slow parts of the‘:;; y_::Tr]eé igmpoon:ant ;nérg 'S’t rr:r:Z?err:lase te?lt;;setha;mrzo'[(;rse
exact subgrid energy transfer terms(7/:s/~), in the SGS yi y W Vv
J 9y {7y Sij ) [gnergy transfer are captured by the scale-similarity model. It

turbulent kinetic energy equations. The energy transfers a :
evaluated using the DNS data at late time, and £/A should be noted that the Smagorinsky model would not be

=6. The coefficient used for the Smagorinsky constant i§Ple to predict the reverse energy transfer.

0.15. The scale-similarity model does a good job in repre- From the above discussion it is clear that the mixed
senting the rapid part as shown in Fig.(@6while it per- model is better suited for complex inhomogeneous, aniso-
forms poorly with respect to the slow part, as shown in Fig_tropic turbulent flows. The scale-similarity part represents
16(b). The energy transfers predicted by the Smagorinskghe anisotropic energy transfer induced by the mean velocity
model are compared with the exact values in Figgct6 gradient through the rapid part as well as reverse energy
16(d). The rapid subgrid transfer is not captured by the Smatransfer, while the Smagorinsky part represents well the sub-
gorinsky model, as shown in Fig. @@ while the slow en- grid dissipation associated with the slow part. Thus, there is
ergy transfer is well represented, as shown in Figdl6 a physically based reason for including both, the scale-
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similarity and the Smagorinsky parts, as is done in the mixedhe shear layer studied here, some similarities in the influ-
model. It should be noted that the Smagorinsky constant ignce of mean shear on the SGS stress may be anticipated. In
set to the value ofCs=0.15, which is appropriate for the the near-wall buffer region, the turbulence is in a nonequi-
mixing layer. It may be necessary to use the dynamic Smajpriym stage with the turbulence production much larger
gorinsky model to predict the slow part of the SGS dissipaynan the dissipation; therefore, an analogy with the early
tion in more general flows. stage of a mixing layer may be drawn. In the log layer, the
turbulence is in equilibrium with production equal to dissi-
pation, which could lead to similarities with the later stage of
the mixing layer when the turbulence is fully developed.
In this section we consider the situation when a homo-  Figures 18a) and 18b) show the energy transferred

geneous filter is used in the mixing layer, i.e., when the togfrom the mean flow to the subgrid Sca|e5<7-ij><sﬁ>, as
hat f(ijlter'ris applie|? OnlsyGigtthe hon:jogeneotus ﬂ?V"_ﬂdirECtiSUvaell as the nonlinear energy transfer between turbulent
xandz r in nsor not explici ntain 't < _
the mean ﬁoiﬁfuhusg there ies ?1(()) raopei(j pg{rt.e I-F|J0\(/:ve¥/ecr0 thaeréicales’_<Tijsij ), for the later sFagg a-nq fok, /A =2 and

: ’ ' . ' . The flux from the mean flow is significantly smaller than
exists an effect of the mean velocity on the SGS €N€T%he flux between turbulent scales. This result is in qualitative

transfer that isimplicit. It is of interest to compare such aareement with the results in the region far from the wall
filtering to the study of Haertedt al,”® which uses an ideal 29 g 9
observed by Haertadt al,“* and also with those of Domar-

spectral-space filter without leading to a rapid SGS compo- X 8 X
nent, in particular, their analysis of the SGS energy transfefdZki et al,™ who show that the direct transfer by the mean

mechanism. It should be noted that our Study uses physicaﬂOW to the Subgrid-scale fluctuations is relatively small.
space filtering while that of Haertelt al?® uses a spectral- Model predictions of the nonlinear energy transfer have been
space ideal filter. Although the pipe flow and the channediscussed previously. The energy transfeK,;;)(S;), as-
flow used in the study of Haertel al?® are different from  sociated with the mean SGS stress, is compared with model

V. INFLUENCE OF THE MEAN FLOW IN THE CASE
OF A HOMOGENEOQOUS SPATIAL FILTER
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. s FIG. 18. (a) Energy transfer from mean flow to the SGS(TH-)(S,T)/E, and
FIG. 17. (@) A rapid contribution to energy transfer {u;~") and(u,~") energy transfer between turbulence scaleg,r;s/~)/e, at t*=1089,
equations, at timet* =236, A{/A=2. A comparison with the scale- A¢/A=2. (b) Energy transfer from mean flow to the SGS(7;)(S])/e,

similarity model (;;). (b) A slow contribution to energy transfer it =% and energy transfer between turbulence scates;; si")e, att*=1089,
and(u§<2> equations, at timé* =236, A, /A=2. A comparison with the A;/A=4.(c) Evaluation of model predictions of energy transfer from mean

scale-similarity model I(;;). (c) Rapid and slow contributions to energy flow to the subgrid scales & =1089,A;/A=4.
1< 1<

transfer in the{u;~u;~) equation, at time* =236, A;/A=2. A compari-
son with the scale-similarity modeL ;). . . . . L
with corresponding quantities obtained when filtering is ap-

plied in all three directions. The transfer is similar to that
predictions in Fig. 1&). The scale-similarity model per- associated with the slow part of the SGS tenfs®e Fig.
forms better than the Smagorinsky model 12(a)], with no evidence of the strong anisotropy associated
Figure 19 shows the energy transfer between large andith the rapid componerisee Fig. 18b)]. Furthermore, the
small turbulent scales for each normal stress componentjuasi-isotropy of the SGS energy transfer agrees with the
—(7}; si’j<) (without summation on indeX in the fully de-  results of Haertekt al® in the region far from the wall.
veloped mixing layer. The energy transfer can be compared At the early stage, the mean flow plays a dominant role
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implied.
in the energy transfer mechanism, as shown in Fig. 20, where
—(mj)(Sj) and —(7{js/~) are compared foA;/A=2.In  orgy transfer mechanism agree qualitatively well with previ-
agreezr;ent with the results in the near-lvall_reglon of Haertel s studies using the spectral cutoff filter in the literature
etal,” the mean contribution;- (<7-”->(S|j>, is larger than  pecause the rapid component is now absent. Furthermore, it
the fine-scale contribution (7;s;~). When—(7/;s{;") ("0 s demonstrated that the early-time, nonequilibrium turbu-
summation on index is plotted for different Reynolds stress |ence in the shear layer has strongly anisotropic SGS energy
componentgsee Fig. 21, in agreement with the observation (ansfer analogous to that observed in near-wall turbulence
of Haertelet al?® and also with previous results concerning by Haertelet al,2 while fully developed turbulence in the
the slow part in the case where the filter is applied in all threg;pear layer has a substantially more isotropic energy ex-

directions[see Fig. 148)], a strong anisotropy in the energy change between grid and subgrid scales, similar to that in
transfer mechanism clearly appears. However, unlike theqilibrium, log-layer turbulence.

other study, which uses the spectral cutoff filter, no back-
ward transfer is opserveq with the ph.ysical—spac.:e filter usegll_ CONCLUDING REMARKS
here. This is consistent with an analytical prediction made by
Leslie and Quarint? experimentally observed by Liet al® Subgrid-scale modeling in the case of inhomogeneous
and numerically confirmed by Piomelket al,?’ that is, turbulent flows is considered. By definition, the mean veloc-
physical-space filtering significantly reduces the amount ofty has a nonuniform gradient in the direction of inhomoge-
backward transfer with respect to spectral-space filtering. neity. Filtering in the inhomogeneous direction is necessary
In summary, when the filter is applied only in the homo- in the LES of such flows because a computational grid suf-
geneous flow directions, the results concerning the SGS eificiently fine to resolve the smallest spatial scale of the tur-
bulence in that direction is not practical. Inhomogeneity does
not permit the use of the spectral cutoff filter in that direction
' ™ and physical-space filtering provides a simple alternative.
—<ip<sSle | In this paper we focus on the properties of the SGS
stress linked with the presence of mean velocity gradients. It
is shown that, in addition to the classical SGS stress tensor
due to the fluctuating velocity, a contribution that is explic-
itly connected to the mean velocity gradient is also present.
By analogy to the decomposition into rapid and slow parts of
the pressure—strain correlation in Reynolds-averaged turbu-
lence modeling, a rapid SGS stress, which depends explicitly
on the mean velocity gradient, and a slow SGS stress that
does not are defined. Any change in the mean velocity is
instantaneously reflected in the rapid SGS stress. The rapid
- - : s ; part induces not only significant anisotropy in the SGS stress
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 . .
Vo) but also alters the energy transfer between grid and subgrid
: scales of turbulence. Analysis of these two SGS stress com-
FIG. 20. Energy transfer from mean flow to the SGS(r,)(S)/e, and ponents using a Taylor expansion shows that the magnltude
energy transfer between turbulence scalegrs/ ")/ e, at early staget* of the rapid part can be comparable to the slow part in two
=236,A(/A=2. situations: first, when the turbulence is not in an equilibrium

<
0.5 ST =TSl

Mean and fluctuating SGS energy transfer




Phys. Fluids, Vol. 11, No. 5, May 1999 Shao, Sarkar, and Pantano 1247

state, that isP/e>0O(1), andsecond, in equilibrium turbu- model. Similarly, an experimental study of a high-Reynolds
lence when the resolution is such that the filter size is nohumber cylinder waké? a flow with local inhomogeneity,
much smaller than the integral length scale of turbuledce. found that the SGS dissipation obtained by streamwise filter-
priori tests are performed using an existing direct numericaing depended strongly on large-scale coherent structures
simulation database of the temporally evolving turbulentwhen conditionally averaged and, furthermore, while the
mixing layer. Quantitative and qualitative agreement be-Similarity model was able to capture this phenomenon the
tween numerical results and the analysis is obtained. Th&magorinsky model was not.
numerical results also show back-transfer of energy associ-
ated with the ra_pld S_GS str-ess. . ACKNOWLEDGMENTS
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