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Abstract-Direct numerical simulation of uniform shear flow is used to study the anisotropy of 
fluctuating motion in a stably stratified medium with uniform mean shear. Turbulence is found to 
be three dimensional over a wjde range of gradient Richardson numbers in the two Bows investigated 
here: vertical mean shear ($$-) and horizontal mean shear (g). The role of the turbulent F’roude 
number in establishing the regime of stratified turbulence observed here is described. The fluctuating 
velocity gradients are examined. The vertical of streamwise velocity is found to dominate the other 
components of turbulent dissipation in both horizontal and vertical shear flows. @ 2003 Elsevier Ltd. 
All rights reserved. 
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1. INTRODUCTION 
Stably stratified shear flow with horizontal mean shear, g = Sh, was compared with vertical 

mean shear, $$ = S,, using DNS (direct numerical simulation) in our previous studies, [1,2]. The 
turbulent kinetic energy was found to be much larger when the mean shear is horizontal essentially 
because the turbulent production in such a case does not directly involve the gravity-suppressed 
vertical velocity and the associated vertical buoyancy flux is larger because turbulence remains 
three dimensional. However, gravity was found to affect the overall dynamics, for example, 
when Ri, = N2/St was larger that a critical value of Ri, N 1.5, the turbulence was found to 
decay. The coupling between fluctuations in horizontal velocity, vertical velocity, and density 
is key to understanding the observed behavior and motivates the present study of turbulence 
anisotropy. Presumably, the coupling leads to qualitative differences in the vertical mixing due 
to different types of fluctuations supported in the stably-stratified ocean such as internal waves [3], 
buoyancy-a&cted but three-dimensional turbulence, the potential vorticity mode [4,5], and fossil 
turbulence [6]. 

In the case of vertical shear flow, it is well known that, with increasing Richardson number, 
the turbulent energy and associated vertical mass transport is suppressed. However, the effect 

of stratification on the anisotropy of the fluctuating velocity is not clear. Ocean spectra, for 
example [7], often show internal wave activity at low wave numbers followed by three-dimensional 
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turbulence. In the case of decaying grid turbulence, the laboratory experiments of Pearson and 
Linden [8], Lienhard and van Atta [9], Fincham et al. [lo], and DNS of Metais and Herring [ll] 
indicate that, although the vertical component is reduced with respect to the other components, it 
is only after a very long time that the state is close to the two-dimensional (more accurately two- 
component) limit of horizontal turbulence. In the case of uniform vertical shear, the laboratory 
studies of Rohr et al. [12] and DNS of Gerz et al. [13], Holt et al. [14], Jacobitz and Sarkar [15] 
indicate that the two-component limit is not reached. The results of Itsweire et al. [16] find 
significant deviation of small-scale isotropy due to stratification. Laboratory investigations of 
wakes by Chomaz et al. [17], Spedding et al. [18], and jets by Voropayev et al. [19] show the 
formation of predominantly horizontal eddying motion. The studies of Fincham et al. [lo] and 
Spedding et al. [18] suggest that the vertical variability of the collapsed horizontal structures lead 
to dominant velocity gradients in the vertical direction. 

2. THE GOVERNING EQUATIONS 
The density p, the velocity ui, and the pressure p, denote fluctuations with respect to the mean 

density p, the mean velocity ui, and the mean pressure p. The uniform mean density gradient, 
$$ = S,, imposes a stable stratification which is hydrostatically balanced by a corresponding 

mean pressure gradient. Uniform mean shear, $$ = S, or $$ = sh, provides the forcing for 
turbulence. The effect of rotation is neglected since, for the s&es considered here, the Rossby 
number Ro >> O(1). 

After the customary Boussinesq assumption, the equations governing the evolution of the 
fluctuating variables are as follows, 

Duz du2 1 aP a%4 Dt+U.-L--L-+V-, 
’ dXj PO f3x2 aXjaXj 

0~3 au3 
z+“j& 

P 1 ap- d2U~ 
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PO 8x3 hj dXj 

(3) 

(4) 

(5) 

where v and QI are molecular transport coefficients. Examination of equations (l)-(5) shows a 
highly anisotropic structure. Mean shear directly forces only the streamwise velocity while the 
other velocity components are forced by the fluctuating pressure gradient. Gravity and density 
fluctuations directly influence only the vertical component us. The mean density gradient appears 
only in the density fluctuation equation and not the mean momentum equation. 

‘In the absence of stratification, all three components of the fluctuating velocity in a shear 
flow are experimentally observed to have comparable magnitudes with the following ordering: 
streamwise > spanwise > cross-stream. In the case of uniform vertical shear, equilibrium values 
of the energy partition into the three components that are experimentally measured when Ri, = 0 
are 

q2/2K = 0.53, z2;2/2K = 0.27, @/2K = 0.20. (6) 

Despite the fact, that mean shear forces only a single velocity component, the other two veloc- 
ities are induced to have comparable magnitudes by the fluctuating pressure gradient since the 
fluctuating pressure is linked to all velocity components by the following Poisson equation: 

0211 = -2s au3 auj aui + 9 ap -- --, 
PO udXl axi axj PO 3x3 
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The buoyancy term in the momentum equation introduces an additional nondimensional param- 
eter into the problem. If the density fluctuation is estimated by p III (%)/a where la is the 
appropriate vertical length scale, then the turbulent Froude number, 

Frt = u’/N13, (8) 

appears naturally as the relevant parameter because the ratio of the two terms that cause vertical 
motion, the pressure gradient and buoyant acceleration, is O(Fr:). Buoyancy effects are important 
when Frt 5 O(1). Here, N = d-i is the Brunt-Vaisala frequency while the superscript ’ 
denotes the characteristic scale for a fluctuation, for example, u’ is a typical magnitude of velocity 
perturbation. In the case of sheared turbulence, the gradient Richardson number, Ri, = N2/S2, 
is a convenient choice for parametric studies because it quantifies the ratio of mean buoyant forcing 
to mean shear forcing. Setting aside the issue of convenience, it should be emphasized that it 
is the Froude number, Frt, which fundamentally determines the dynamical coupling between 
stratification and fluctuating motion. 

3. DNS RESULTS ON THE VELOCITY ANISOTROPY 
It is clear, that the vertical component of turbulence is suppressed with increasing stable 

stratification since turbulence has to do work against gravity. This gravity-induced reduction of 
vertical motion eventually leads to global suppression of turbulence in stratified shear flow. For 
example, in the DNS cases to be considered here, the turbulent kinetic energy K decays when 

Rig,,, N 0.18 is exceeded in vertical shear flow and Ri,,,, N 1.5 is exceeded in horizontal shear 
flow. Reduction of the vertical component is often thought to imply that turbulence tends to 
the twocomponent limit with the vertical velocity fluctuation much smaller than the horizontal 
velocity fluctuations. Figure la shows the evolution of vertical energy partition Ez/2K in vertical 
shear flow. In the case with Ri, = 0, after an initial transient, the experimentally observed value 
shown in equation (6) is asymptotically approached. The vertical energy partition decreases 
somewhat with increasing Richardson number. However, the two-component limit is certainly 
not reached. Figure lb shows that, in horizontal shear flow too, the turbulence does not reach a 
two-component state. 

4. THEORETICAL SCALINGS APPLICABLE TO 
THE VELOCITY COMPONENTS 

In order to understand our results, we reconsider the governing equations to derive simple order- 
of-magnitude estimates applicable when buoyancy substantially effects the state of fluctuating 
motion. If the other term in equation (4) that balances buoyancy is the unsteady term, then 

(9) 

where 73 is the characteristic time scale. Similarly, if the unsteady term balances the forcing by 
mean density gradient in equation (5) then, 

P’ ; = 0 (u&) (10) 

Multiplying equations (9) and (10) leads to the following relation for the time scale 73 = l/N. 
The magnitude of us is set by the fluctuating pressure gradient in the vertical momentum balance 
and estimating the pressure by p = O(p~u’~), leads to u$/u’ = O(Fr,). Recall that the Froude 
number Frt is defined by equation (8). The nonlinear terms do not invalidate these scalings as 
long as they are of the same or lesser order as the unsteady term. Thus, the vertical velocity has 
a characteristic time scale N, imposed by stratification. 
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Figure 1. Evolution of the vertical energy partition $/2K as a function of the 
gradient Richardson number Ri in (a) vertical shear flow and (b) horizontal shear 
flow. 

The streamwise velocity fluctuation on the other hand, has a characteristic time scale l/S, 
imposed by the mean shear. It should be noted that the fluctuating pressure gradient couples 
the vertical and horizontal motions by imposing the time scale l/S, on us, and similarly, l/N 
on ui and uz. It can be anticipated, that with increasing values of Ri, = N2/S2, the vertical 
shear-induced correlation between ui and us as well as the horizontal shear-induced correlation 
between ui and ug is hampered because of the increasing disparity between the characteristic time 

- - scales, l/S and l/N. The reduction in shear stress, uius and 211212, and associated production of 
turbulent kinetic energy K leads to eventual decay of velocity fluctuations for sufficiently large 
stratification. Indeed, the direct cause of turbulence decay in a stratified medium is the reduced 
production and not the buoyancy flux. In summary, the regime of stratified sheared turbulence 
which occurs when F’rt 5 O(1) and all terms (except the viscous term) are of the same order 
in the vertical momentum equation, is characterized by the following scalings for the fluctuating 
variables: 

NQ = O(l). 

It is emphasized that, although the motion described by equation (11) has a characteristic time 
scale 0(1/N) for the vertical velocity, this mode does not necessarily represent a propagating 
linear internal wave. 
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In the preceding arguments, the assumption that the unsteady term balances the buoyancy 
term in equation (4) leads to the constraint that 5 = 0(1/N). A plausible alternative is to fix 
the time scale r in all equations to be the horizontal advection time scale 11/u:. Furthermore, 
if Frt < 1, the dominant balance in the us equation must be between the fluctuating pressure 
gradient and the buoyancy term with the unsteady term being of higher order. As shown by 
Riley and Lelong [20], such a balance leads to the potential vorticity mode characterized by 

; = O(cr), $=o(aR:), g+E). (12) 

Here, a: is the aspect ratio introduced by the system geometry. The current discussion is limited to 
geophysical length scales of 1 < 50m with cx = O(1). According to both equations (11) and (12), 
the fluctuating velocity approaches the two-component limit ub/ui + 0, assuming Frt -+ 0 with 
increasing stratification. 

5. THE TURBULENT FROUDE NUMBER 
Since the relative magnitude of vertical and horizontal components is controlled by the turbu- 

lent Froude number, it is of interest to obtain the evolution of Froude number from our DNS. It 
is found that Frt asymptotically reaches a constant in the simulations. The dependence of the 
asymptotic value of the vertical Froude number Fr, = w’/NL, on the gradient Richardson num- 
ber is given in Figure 2. Here w’ is the r.m.s. vertical velocity fluctuation while L, = prms/(& 
is the Ellison scale. The most striking aspect of Figure 2 is that, after a rapid initial decrease, 
the Froude number becomes relatively independent of Ri, with Fr, N 0.6 in vertical shear flow 
and Fr, N 0.75 in horizontal shear flow. There appears to be no tendency for Fr + 0 explaining 
our DNS result that the fluctuating motion does not approach the two-component limit even for 
large values of Ri, corresponding to strongly-decaying turbulence. 

Ri 
Figure 2. The variation of Frt as a function of gradient Richardson number in vertical 
shear flow (filled symbols) and horizontal shear flow (unfilled symbols). 

Why does the turbulent Froude number not approach zero with increasing values of N? The 
unsteady term and the shear-forcing term must be of the same order in the streamwise momentum 
balance, equation (2), giving, 

u3 -=o $- . 
Ul ( > 

(13) 
1 

The 1.h.s. of equation (13) was derived to be O(l?rt) and, since ui is forced by the mean shear, 
the r.h.s. is O(1). Thus, 

Frt = O(1). (14) 
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6. ANISOTROPY OF THE VELOCITY GRADIENT 
Stratification imposes anisotropy on the velocity gradients, and consequently, the turbulent 

dissipation. Table 1 shows values of the nine components, sap, defined by 

Note that there is no summation over any Greek index and the turbulent dissipation rate E is 
used for normalization. For reference, a corresponding table in the case of isotropic turbulence 
would show the value of 0.0667 for all straining components ((1. = p) and a value of 0.1333 for all 
shearing components. Table 1 shows the relative contributions for both zero and a large value 
of Ri,. 

Table 1. The component .z~~/E at St = 11 in (a) horizontally sheared flow, and (b) 
vertically sheared flow. 

Ri, = 0.00 a!=1 a=2 cY=3 Ri, = 2.00 cY=l or=2 a=3 

p=1 0.045 0.065 0.445 p=1 0.009 0.007 0.001 
(b) p=2 0.193 0.069 0.113 p=2 0.087 0.021 0.023 

p=3 0.219 0.192 0.060 p=3 0.470 0.361 0.020 

In the unstratified case with Ri, = 0, the largest gradient corresponds to the shearing direc- 
tion, the l-2 component in horizontal shear flow and the l-3 component in vertical shear flow. 
However, for large Ri,, the l-3 component, which is the vertical gradient of the streamwise fluc- 
tuation, dominates all other components. In the flow with vertical mean shear, the case with 
high Richardson number has decaying turbulence and one might suspect that the dominance of 
the l-3 fluctuating gradient is due to low Reynolds number which alrows the anisotropy of the 
mean distortion to permeate into the small scales. However, the observed dominance of the l-3 
fluctuation at high Ri, in the case of horizontal mean shear, $$, cannot be a low Reynolds num- 
ber artifact. Evidently, it is the stable stratification that causes the dominance of the fluctuating 
vertical shear irrespective of the direction of mean shear forcing. Recent PIV measurements in 
stratified wakes and grid turbulence have been used to infer collapse of the motion into horizon- 
tal layers accompanied by large vertical gradients due to decorrelation of these horizontal layers 
in the vertical direction. Our observation of the dominance of the fluctuating vertical shear in 
uniformly sheared flow is consistent with these experimental observations. 

Stable stratification induces other changes in the small-scale anisotropy. In the case of vertical 
mean shear, the 2-3 component increases strongly while the 3-2 component decreases strongly. 
In the case of horizontal mean shear, the 3-2 component increases while the 2-3 component 
decreases. Such behavior suggests that, in both cases, the relative contribution of the streamwise 
vorticity component increases. Similarly, it can be deduced that the 52 vorticity component 
also increases while the ~3 vorticity component decreases. Diamessis and Nomura [21] have 
observed a predominance of horizontal fluctuating vorticity in their DNS of stratified flow forced 
by vertical mean shear. The current results are consistent with the observations of Diamessis 
and Nomura [21]. 

8. CONCLUSIONS 
In the case of uniformly sheared flow with either horizontal ($) or vertical ($) shear, hori- 

zontal and vertical velocity fluctuations are found to remain coupled over the range of Richardson 
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numbers, 0 < Ri, < 3, studied here. As a consequence of the coupling, first, horizontal mean 
shear induces vertical mixing, second, the vertical mixing is larger when the r&an shear is hor- 
izontal instead of vertical since the turbulent production in that case is not directly inhibited 
by gravity, and third, the suppression of vertical fluctuations eventually leads to the overall de- 
cay of all velocity fluctuations for sufficiently large values of Ri,. The anisotropy of fluctuating 
gradients is also found to be affected by stratification. At high Ri,, in both horizontal and verti- 
cally sheared flows, the component & dominates, while the streamwise gradients $$ becomes 
small. It appears that, in response to3stable stratification, fluctuating vertical shear hominates 
other components of the dissipation suggesting the appearance of decorrelated horizontal layers 
of motion. Furthermore, there is a collapse of the vorticity towards the horizontal plane. 

The turbulent Froude number, F’rt, is found to approach a O(1) constant at high values of Ri. 
Thus, the limit of two-component turbulence which requires asymptotically small F’roude humber 
is not approachedlin the case of turbulence forced by uniform shear. There are other counter- 
examples such as the far-wake and horizontal jet where F’rt progressively decreases. In such 
situations, the two-component limit may be approached. In geophysical flows with a variety of 
mechanisms available for forcing fluctuating motion, both three-dimensional and two-dimensional 
turbulence are potentially realizable in a stratified medium with the former responsible for most 
of the energetic vertical mixing. 
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