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Large Eddy Simulation of Evolution
of a Passive Scalar in Plane Jet
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Large-eddy simulation (LES) is performed to investigate the passive scalar development in a plane jet. This is
a follow-up of our previous simulation of the jet � ow� eld. The LES results are compared to both experiments
and direct numerical simulation (DNS). Two subgrid models are investigated: the dynamic Smagorinsky model
and the dynamic mixed model. It is found that the evolution of mean scalar and turbulent scalar intensity is well
represented. Some properties of the LES models such as the evolution of the dynamic constant and the subgrid
viscosity are also discussed. Pro� les of higher scalar moments show non-Gaussianity near the jet boundaries that
is associated with external intermittency. Finally, the probability density function (PDF) of the passive scalar
computed with LES is obtained and compared with the true PDF obtained with DNS. The LES approach is found
able to represent the main characteristics of the PDF including qualitative changes during its initial evolution.

I. Introduction

T RANSPORT and mixing of a scalar is very important for en-
gineering and environmental problems such as fuel–oxidant

mixing and contaminant dispersion. A necessary prerequisite for
predictionof the two-phase mixing that occurs in the establishment
of a premixed reactant mixture is to compute the limiting case of
passive scalar transport.

Several experiments of heated plane jets exist where the tem-
perature difference with respect to the ambient, kept small to limit
buoyancy effects, can be considered as a passive scalar.1¡4 Jenkins
andGoldschmidt1 measuredtemperature,shearstress,andvelocity–

temperature correlation in the fully turbulent region of a plane
jet. Davies et al.2 performed measurements to investigate why the
mean temperature distribution is wider than that of the velocity.
Browne et al.3 providedmeasurementsin the initial regionof the jet.
Ramaprian and Chandrasekhara4 performed a study using Doppler
anemometry in the fully developed region.

Large-eddysimulation(LES) is a promisingapproachto the prob-
lem of predicting the � ow and associated scalar transport. Recent
reviews of different LES approaches include those by Lesieur and
Metais5 andMoin.6 LES ofpassivescalarhas mostly reliedon a sim-
ple gradient approximationto the subgrid scalar � ux that introduces
a turbulent Prandtl number Prt . The value of Prandtl number Prt

is either a speci� ed model parameter7 or obtained using a dynamic
procedure.8 The dynamic Prandtl number model has been used, for
example, by Akselvoll and Moin9 as part of the computationof two
coaxial jets with fast combustionand by Vreman et al.10 for closure
of the energy equation in an application to a temporally evolving
compressiblemixing layer. An alternateprocedurefor obtaining the
subgrid scalar � ux introduces a tensor eddy diffusivity that is given
by modeled stretched-vortexdynamics.11 LES of nonpremixed tur-
bulent reacting � ows often require models for the subgrid scalar
variance in addition to a prediction of the � ltered scalar. Proposals
for modeling the subgrid scalar variance include a scale-similarity
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model,12 a gradient model,13 and a model based on moment-based
reconstructionof the scalar � eld.14

Direct simulation is a very accurate numerical method for � ow
prediction but requires very re� ned meshes and is limited to mod-
erate Reynolds number. A direct simulation of a plane jet has been
performed,15 and the evolution of the mean and � uctuating passive
scalar and its probability density functions have been studied. An
LES of the same (as well as higher-Reynolds-number) plane jet but
without the passive scalar has also been performed.16 In this LES
study,16 the � ow� eld was studied in detail and the results compared
with experimentsand direct numericalsimulation(DNS). In the cur-
rent work, we extend the study to scalar transport in the plane jet.

The goal of the present paper is to test subgrid models for the
passive scalar and to investigate, by comparison with the direct
simulation and experiments, if LES is able to predict the evolution
of passivescalar statistics including its probabilitydensity function.

II. Governing Equations
For brevity, we do not repeat the equations for the � ltered

momentum equations and models for the subgrid stress tensor,
qi j D ui u j ¡ Qu i Qu j , which were described in detail previously.16

A. Passive Scalar Equation
The � ow is governed by the Navier–Stokes equations, represent-

ing mass conservation, momentum conservation, and energy con-
servation. The Navier–Stokes equations are solved in their com-
pressible form, for future generalization to high-speed � ow, but in
the case studied here, the Mach number is suf� ciently small so that
compressibility effects can be neglected.

The dimensional scalar transport equation (for example, see
Libby and Williams17 ) can be written as
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r are, respectively,
the reference values of the Reynolds number and the Schmidt
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1510 LE RIBAULT, SARKAR, AND STANLEY

number. Because the simulations are performed for constant scalar
diffusivity D D D¤=D¤

r D 1, the equation of the passive scalar can
be written as

@½»
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@xk
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@xk

(3)

B. Filtered Scalar Equation
The Navier–Stokes equations are � ltered using a top-hat � lter. A

� lter width 1 D 2h, where h represents the grid spacing, is used. In
our previous study16 the in� uence of � lter size was studied, and the
choice, 1 D 2h, which was found to give the best results, is retained
for the current study.Filtering of the passive scalar equation leads to
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where q»

k is the subgrid scalar � ux,

q»

k D uk » ¡ Quk
Q» (5)

C. Subgrid Models
The standard subgrid models, developed for the velocity � eld,

can also be applied to the passive scalar equation. The dynamic
Smagorinsky model applied to both scalar and momentum trans-
port, as well as the dynamic mixed model again applied to both
scalar and momentum transportare investigatedhere.These models
are introduced into the scalar equation similarly to the momentum
equation.

Dynamic Smagorinsky Model
The more classicalmodel is the Smagorinskymodel,18 which, for

a passive scalar, can be written as

q»

k D ¡®t
@ Q»
@xk

with ®t D C2
» 12j NSj; j NSj2 D 1

2
Spq Spq

(6)

In the standard model, C» has a value slightly higher than Cs , the
analogous constant for subgrid momentum transport; C» =Cs ¼ 1:4
(Ref. 7).

The dynamicversion19 has been shown to be much more accurate
than the standardversionfor predictingthe velocity� eld in the plane
jet.16 Therefore, a dynamic procedure is also used for the passive
scalar.The squareof theconstantC2

» is replacedby a coef� cientCd» ,
which is dynamicallycomputedand dependson the localstructureof
the � ow. The Smagorinsky eddy diffusivity formulation is retained:

q»

k D ¡Cd» 12j NSj
@ Q»
@ xk

(7)

To compute Cd» , a test � lter, denoted by a caret and corresponding
to a � lter width larger than that of the LES, is introduced. The
consecutive ON1 application of these two � lters de� nes a � lter with
a � lter width of ·1. The dynamic constant is calculated with a
least-squares approach according to

Cd» D hMi L i i=hMi Mi i (8)

L i D u i
N» ¡ ui

ON» (9)

Mi D ¡.·1/2j ONSj ON» C 12j NSj N» (10)

To prevent numerical instability caused by negative values of Cd» ,
the numerator and denominator are averaged in the homogeneous
direction. The constant Cd» is arti� cially set to zero during the few
instances when it is still negative.

Dynamic Mixed Model
Similar to the mixed model for the subgrid momentum � ux, the

mixed model for the subgrid scalar � ux,

q»

k D ¡Cd» 12j NSj @ Q»
@xk

C uk
N» ¡ uk » (11)

also consists of a Smagorinsky part and a scale-similarity part. In
the dynamic version, the constant of the Smagorinsky part is dy-
namically computed.This model takes advantageof the correct dis-
sipation produced by the dynamic eddy-viscosity part while the
similarity part allows other effects such as the backscatter of en-
ergy from subgrid scales to resolved scales and anisotropic energy
transfers between grid and subgrid-scalemotion.

The dynamic model coef� cient is obtained by

Hi C Cd» Mi D L i (12)

where Mi and L i are de� ned by Eq. (9) and (10), respectively, and
Hi is as follows:

Hi D ui » ¡ ui » ¡ .ui » ¡ ui »/ (13)

The dynamic model coef� cient is obtained with the least-squares
approach:

Cd» D hMi .L i ¡ Hi /i=hMi Mi i (14)

III. Numerical Method and In� ow Conditions
Because the numericalmethodhas alreadybeen largelydescribed

in our previous work,15;16 only its principal characteristics are re-
called here. For the velocity, spatial derivativesare computed using
a nonuniform fourth-order compact scheme based on the uniform
scheme of Lele.20 To ensure long-time nonlinear stability, a fourth-
order nonuniformcompact � lter is applied to the � eld at each itera-
tion. The fourth-order Runge–Kutta scheme of Carpenter et al.21 is
used for the time integration of the convective terms.

For the passive scalar equation, the � ux-corrected transport
scheme of Zalesak22 is used. This scheme is chosen to ensure that
the passive scalar remains bounded between its extrema of 0 and 1.
A predictor stage is performed with a � rst-order upwind scheme,
which producesa monotone solution.The predictedsolution is then
modi� ed by a corrector stage using the differencebetween a fourth-
ordercompact evaluationand the low-orderscheme.This correction
is nonlinearly limited to avoid spurious numerical oscillations.

For the boundary conditions, at the out� ow as well as the upper
and lower sidewall boundaries, nonre� ecting conditions based on
characteristic equations are applicable,23;24 and that suggested by
Thompson23 is implemented. At the out� ow boundary, a pressure
relaxation boundary condition is also used.25 At the in� ow bound-
ary, the time variation of the incoming characteristic variables are
speci� ed whereas the equation for the outgoing characteristicvari-
able is solved using internal biased derivatives.Moreover, to isolate
the interior of the domain from the effects of the boundary condi-
tions, a buffer zone based on the approach of Hu26 is used at the
nonre� ecting boundaries.

The longitudinal mean velocity pro� le at the in� ow is a top-hat
pro� le with shear layers at the edges. A hyperbolic tangent pro� le
is used:

U D [.U1 C U2/=2] C [.U1 ¡ U2/=2] tanh.y=2µ/ (15)

where µ is the momentum thickness of the shear layer, U1 is the
longitudinal velocity in the middle of the jet, and U2 is the co� ow
velocity.

The same hyperbolictangentpro� le is used for the passivescalar:

» D [.»1 C »2/=2] C [.»1 ¡ »2/=2] tanh.y=2µ/ (16)

with »1 D 1:0 and »2 D 0:0 in the jet and co� ow, respectively. The
value of µ used for the passive scalar is the same as that used for
the mean longitudinalvelocitypro� le. For the velocity,a broadband
forcingrepresentativeof isotropicturbulenceis utilizedat the in� ow,
and a lateral shape is appliedsuch that the � uctuationintensitypeaks
in the shear layers on either side of the jet.
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LE RIBAULT, SARKAR, AND STANLEY 1511

IV. Computational Results
A. Jet and Grid Parameters

The case discussed here corresponds to the three-dimensional,
unsteady simulation of the strong jet simulated previously using
DNS.15 The velocity� eld of that jetwas alsosimulatedsubsequently
using LES.16

The initial jet Reynolds number is Red D ½1U j d=¹ D 3 £ 103,
where 1U j is the velocity difference between the two streams at
the in� ow and d is the jet slot width. The ratio of the velocity be-
tween the low- and high-speedstreams is 0.09.The Schmidt number
Sc D ¹=½D» D 1:0, and the Prandtl number Pr D C p¹=k D 0:72.
The Mach number of the high-speed stream is 0.35, and the con-
vective Mach number of the shear layer is Mc D 0:16. At such low
Mach numbers, the physical characteristics of the � ow are similar
to those of an incompressible � ow, and all of the subgrid models
used in the computations are those developed for incompressible
� ows. The Reynolds number used here is relatively small for a LES
but has been so chosen to make comparison with DNS. In our pre-
vious LES,16 computations of a jet at the larger Reynolds number
of 3 £ 104 have been performed, but, consistent with experimen-
tal data in jets starting with turbulent in� ow conditions, no strong
differences appear in the results.

A 61 £ 105 £ 16 grid is used with the DNS domain size: L x D 12,
L y D 15, and L z D 4, where the jet slot width h is used for normal-
ization. A slight stretching is used in the x and y directions but
this stretching has been found to have a very small in� uence on
the solution, as discussed by Le Ribault et al.16 The LES mesh has
approximately a factor of 22 fewer points than the DNS grid. The
CPU time of one LES simulation with the dynamic Smagorinsky
model on a C90 is approximately of 7 h, whereas that of the DNS
is approximately 120 h.

Computations are performed with the dynamic Smagorinsky
model and the dynamic mixed model. A computationwas attempted
on the LES grid without any LES model. This computationwas un-
stable, con� rming the necessity of an LES model.

B. Modeling and Numerical Errors
LES are typically performed on grids that are just � ne enough

to resolve the important large-scale � ow structures, and numerical
discretizationerrors on such grids can have considerable effects on
the simulation results. This problem has been recently discussed
in the literature, for example, by Vreman,27 Salvetti and Beaux,28

and Kravchenkoand Moin.29 The differencebetween LES and DNS
results is the total error, which is the sum of two terms: modeling
error arising from the subgrid model and the discretization error
caused by the numerical method. A method to separate those two
errors has been proposedby Vreman27 basedon the expectationthat
the discretization error in the LES decreases when the resolution
is increased with the � lter width kept constant. This method had
already been used by Le Ribault et al.16 to separate the numerical
and the modeling error associated with the predicted jet half-width
based on the velocity. The same method is now used to separate the
two errors in the case of the evolution of the jet half-width based on
the passive scalar.

A new LES is performed on a � ner grid keeping the same � lter
width. The computation is performed with the dynamic Smagorin-
sky model. The grid step is divided by two in the x and z directions.
The difference between the two LES represents the effects of the
numerical error on the jet halfwidth ±» :

errnum D ±LES
» ¡ ±

� ne grid LES
»

(17)

whereas the difference between the � ne grid LES and the DNS
approximates the modeling error,

errmod D ±
� ne grid LES
»

¡ ±DNS
»

(18)

Figure 1 shows the effects of those two errors on the evolution of
the jet half-width. Both modeling and discretization errors are rel-
atively small with the dynamic Smagorinsky model. Whereas both
errors have approximately the same magnitude, the signs are oppo-
site, which implies that the discretization error assists the subgrid
model and that the total error is smaller than the modeling error.

Fig. 1 Comparison of numerical and modeling errors in the LES pre-
diction of the downstream evolution of jet half-widthbased on the scalar
� eld; dynamic Smagorinsky model used for both momentum and pas-
sive scalar.

Fig. 2 Instantaneous passive scalar contours produced by dynamic
Smagorinsky model on an xy plane, z = 8.

Interestingly,cancellationof modeling and discretizationerrors has
been observed previously in LES of the velocity � eld, for example,
the plane shear layer10 and the plane jet.16

C. Visualization of the Passive Scalar Field
Isocontours of the passive scalar � eld obtained by the dynamic

Smagorinskymodel and by the dynamic mixed model are presented
in Figs. 2 and 3, respectively.White contours indicate pure co� ow
� uid, » D 0, and black indicatespure jet � uid, » D 1. The main char-
acteristics of the passive scalar � eld are qualitatively captured by
both models. In the initialregion,the columnof pure jet � uid, aswell
as its slight spreadingdue to the effects of turbulentdiffusion,can be
seen.Then regionsof white appear in the jet accompaniedwith dark
patchesin the freestream,showingtheentrainmentof co� ow� uidby
large-scalerollups of the shear layers at the jet edges.Farther down-
stream, small-scale mixing has reduced the extent of pure jet and
co� ow � uid,but still small patchesof � uid,whichare predominantly
composedof one � uid type or the other, can be seen. To summarize,
the instantaneouslarge-scale� eld compares well with DNS, but due
to the coarser mesh, there are fewer small-scale features.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 S
A

N
 D

IE
G

O
 o

n 
N

ov
em

be
r 

17
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/2

.1
47

5 



1512 LE RIBAULT, SARKAR, AND STANLEY

Table 1 Jet growth rates based on the passive scalar and centerline scalar decay rates
for current results, DNS results, and several experimental results

Source K1» K2» C1» C2» K1u=K1» C1u=C1»

DNS 0.137 0.072 0.272 ¡0.38 0.67 0.70
Dynamic Smagorinsky 0.158 ¡0.63 0.292 ¡0.75 0.58 0.65
Dynamic mixed 0.128 1.21 0.277 ¡0.137 0.75 0.72
Ramaprian and Chandrasekhara4 0.167 2.00 0.194 6.00 0.66 0.87
Browne et al3 0.128 5.00 0.189 7.86 0.81 0.76
Jenkins and Goldschmidt1 0.123 0.090 0.261 ¡5.62 0.71 0.61
Davies et al.2 0.115 2.05 0.258 0.920 0.87 0.61

Fig. 3 Instantaneouspassive scalar contours produced by the dynamic
mixed model on an xy plane, z = 8.

Fig. 4 Dynamic mixed model: evolution of mean velocity pro� les.

D. Evolution of the Mean Passive Scalar
Figure 4 shows mean pro� les of the passive scalar at different

streamwise stations obtained with the dynamic mixed model. Simi-
lar results are obtained with the dynamic Smagorinsky model. Sim-
ilarity coordinates are used with the transverse y direction normal-
ized by the jet scalar half-width ±» , whereas the passive scalar is
normalized by the mean scalar difference at the centerline,1»c . At
the in� ow, x=h D 0:0, the scalar has a top-hat pro� le. At x D 2, the
self-preserving pro� le is not yet established, and then, for x > 8,
mean pro� les tend to collapse. The mean passive scalar pro� les
compare well with experimental values.

The evolution of the mean centerlinevalue of the scalar excess is
presented in Fig. 5 together with the DNS results and experimental
data for the centerline temperature decay in heated jets. Figure 6
shows the downstream growth of the scalar half-width. The evolu-
tion of the mean centerline value of the velocity excess and of the
growth of the mean velocity are also presented on the same plot.

In the self-similar region, the mean scalar on the centerlinevaries
as »c / x¡1=2 and can be � tted to .»o=»c/

2 D C1"[.x=h/ C C2"]. The

Fig. 5 Decay of the mean scalar and centerline velocity excess on the
jet centerline: upper curves and symbols correspond to mean scalar,
lower curves correspond to mean velocity.

Fig. 6 Downstream growth of the jet half-width based on the passive
scalar and velocity: upper lines and symbols show ±» /h, and lower lines
show ±U /h.

evolutionof the scalarhalf-widthcorrespondsto the functionalform
±» =h D K1» [.x=h/ C K2» ]. Table 1 shows a comparison of those
constantsto experimentalvalues for the temperatureas well as DNS
values.Both models give reasonableresultscomparedwith the DNS
and the experimental results. For the scalar and for the velocity, the
dynamic mixed model predicts slightly lower growth rates than the
dynamic Smagorinsky model.

The spread rates and centerline decay rates for the scalar � eld
are larger than those for the velocity � eld because the mixing of the
scalar � eld occurs at a faster rate than for the velocity � eld, that is,
the turbulent Prandtl number is less than unity.

E. Comparison of Higher Moments
The rms valueof » deducedfrom the resolved-scalepassivescalar

� eld at the section x=h D 10 is shown in Fig. 7. Both models are
in good agreementwith DNS results, but the dynamic Smagorinsky
model is slightly closer to DNS.
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LE RIBAULT, SARKAR, AND STANLEY 1513

Fig. 7 Comparison of the streamwise turbulence intensity obtained
with the different models at the section x/h = 10.

Fig. 8 Comparison of pro� les of the skewness obtained with different
models at section x/h = 10.

The third moment is given by

h» 03i D
1

¡1
.» ¡ h» i/3 PDF.» / d» (19)

and its normalized value, the skewness, is presented in Fig. 8. Here
h» i denotes the Reynolds average of the » . The probability density
function(PDF) of the resolved-scale� eld is used for the calculation.
The third moment represents transportby turbulence.The skewness
is equal to the Gaussian value of zero at the center of the jet and
then grows rapidly near the borders of the jet.

The fourth moment,

h» 04i D
1

¡1
.» ¡ h» i/4 PDF.» / d» (20)

is also computed using the resolved-scale PDF, and its normalized
value, the � atness,at the samesectionis shown in Fig. 9. The � atness
has an almost constant value, around the Gaussian value of 3 at the
center of the jet and then increases rapidly near the jet borders.The
� atness represents the spikiness of the turbulence.

The large departures of skewness and � atness near the jet edges
from their Gaussian values is consistent with the external intermit-
tency observed in experiments. Evidently, LES is able to capture
external intermittency.

F. Dynamic Constant
Figure 10 presents pro� les of the dynamic constant Cd» at vari-

ous streamwise locations. The plots are presented for the dynamic

Fig. 9 Comparisonof � atness obtainedwith different modelsat section
x/h = 10.

Fig. 10 Dynamic Smagorinsky model: downstream evolution of the
dynamic constant.

Smagorinskymodel, but similar results are obtainedby the dynamic
mixed model. The dynamic constant is low at x D 2, grows rapidly,
and then shows small variations for x > 6. In the transverse direc-
tion, the dynamic constant is high in the center of the jet, where
the turbulence intensity is large, showing that, with the dynamic
procedure, the diffusivity adapts well to the � ow.

Figure 11 presents, at one section (x=h D 10), pro� les of the dy-
namic constant Cd» , which appears in Eq. (7) for the subgrid scalar
� ux as well as the analogous coef� cient Cdu , in a dynamic eddy-
viscosity model for the subgrid stress. The level of the constant is
the same with the two models. The dynamic constants, especially
for the scalar, tend to increase at the jet edges. However, as shown
by Fig. 12, the subgrid transport coef� cients at the jet edges re-
main small because the scalar and velocity gradients are small at
those locations.The dynamic constant for the passive scalar is usu-
ally higher than the dynamic constant of the mean � ow, consistent
with the observation that the mixing of the passive scalar occurs
at a faster rate than the velocity � eld. In the core of the jet, the
ratio Cdu=Cd» is approximately equal to 0.66, in good agreement
with the ratio proposed by Horiuti7 for the constant of the standard
Smagorinsky model. Furthermore, Cdu=Cd» is of the same order as
the ratio C1u=C1» and K1u=K1» .

G. Evolution of the Passive Scalar PDFs
In the studies of mixing in turbulent shear layers, the PDF can

be classi� ed into marching, nonmarching, and tilted types.30 In
a marching PDF, the most probable value varies across the layer
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1514 LE RIBAULT, SARKAR, AND STANLEY

Fig. 11 Dynamic constants associated with scalar � ux and momentum
� ux.

Fig. 12 Subgrid transport coef� cients of both velocity and scalar as-
sociated with different models.

following the local mean value of the scalar. This type of PDF is
characteristic of the classical notion of mixing dominated by the
small scales of motion. In a nonmarching PDF, the most probable
value remains at a constant location across the layer irrespectiveof
the local mean value. This type of PDF characterizesmixing that is
dominated by large-scale engul� ng of pure � uid from the external
streams. The tilted type is a hybrid of the two other types; the most
probablevaluevaries across the mixing region, but secondarypeaks
corresponding to unmixed � uid are present.

In the DNS,15 immediatelyafter the nozzle, the PDF has a march-
ing behavior associated with the broadband in� ow � uctuations and
then after the vortex rollup and before the fully developed region
becomes nonmarching.In the region of fully developed turbulence,
the � ow is again dominated at the center by small-scale structures,
but, at the edges, large engul� ng structures remain and doublepeaks
in the PDF are present.

The goal is to see whether PDFs obtained with the � ltered scalar
� eld, without additional models for variation of the scalar around
its � ltered value at the subgrid level, are also able to reproduce the
behaviorof scalar PDFs obtainedwith DNS. The intensityof the in-
� ow velocity� uctuationsis the sameas in the DNS with a maximum
valueof 5% at the shear layers.Resultswith the dynamic Smagorin-
sky model are shown for three streamwise locations,x=h D 1, 7, and
11:5. DNS results from correspondinglocationsare given in the pre-
vious work15 and are not shown here for brevity.

The PDFs are � rst presented at the streamwise station x=h D 1,
for three lateral locations, 0:33< y=±» < 1:66, ranging from the jet

Fig. 13 Variationof PDF of the passive scalar across the jet atx/h = 1:0.

Fig. 14 Variationof PDF of the passive scalar across the jet atx/h = 7:0.

centerlineoutward through the upper shear region (Fig. 13). At this
section, the behavior of the jet is determined by the in� ow con-
ditions, and mixing is dominated by the effects of the broadband
turbulenceat the in� ow. The � lled symbols across the top of Fig. 13
give the mean values associated with the PDF drawn with the cor-
respondingun� lled symbols. The peak in each PDF corresponds to
the mean scalar value, and thus, the PDFs are of the pure marching
type in agreementwith the DNS. The width of the PDF is a measure
of the mixing due to the velocity � uctuation. At y=±» D 0:33 and
1:66, respectively, either pure jet � uid (» D 1) or pure co� ow � uid
(» D 0) is present.At y=±» D 0:66 and 1:33, the PDF is wider, but the
probability of having pure co� ow or pure jet scalar is still high. At
y=±» D 1, the center of the upper shear layer, a broad range of scalar
values is probable with peak at the mean scalar value. This station
corresponds to where the intensity of the turbulence is the highest,
and consequently,the mixingdue to the velocity� uctuationsis high.
Compared to the DNS results, the overall behavior is the same, but
in the LES the PDFs are wider and the peaks are shorter indicative
of additionalmixing due to subgrid � uctuations.

The PDFs at the downstream location x=h D 7 and for � ve cross-
stream stations are shown in Fig. 14. This location is at the end
of the potential core and before the beginning of self-similarity.At
y=±» D 0, in the center of the jet, the probability of having pure
co� ow � uid is high. When the cross-stream location moves away
fromthe jet centerlineto y=±» D 0:43,0:87, and1:74, themeanscalar
value (solid symbol at the top) progressively decreases. However,
the peak of the PDF does not march along with the mean value
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Fig. 15 Variation of PDF of the passive scalar across the jet at
x/h = 11:5.

suggesting a nonmarching PDF. The results from DNS show the
nonmarching behavior even more clearly. At y=±» D 0, the proba-
bility of having pure jet � uid is much higher in the DNS than in the
LES. At the station y=±» D 0:87, the strong secondary peak, corre-
spondingto pure jet that is present in theDNS, does not appear in the
LES results. Thus, diffusivity, which is larger in the LES relative
to the molecular value, reduces the presence of strong patches of
unmixed jet � uid. This is an important difference between the PDF
calculatedusing the � ltered scalar � eld and the true PDF calculated
using the DNS scalar � eld that leads to quantitative discrepancies
betweenscalarmomentsobtainedbyLES with the truevalues.How-
ever, LES is able to qualitativelycapture the nonmarchingbehavior
of the PDFs at x=h D 7 seen in the DNS.

Finally, the PDFs are presented at the section x=h D 11:5 in the
region with full-blown turbulence (Fig. 15). At y=±» D 0 and 1.07,
there are single peaks close to the correspondingmean values, and
the PDF exhibits a marching behavior. At y=±» D 1:95, there is a
strong peak correspondingto pure co� ow � uid. At this station, sim-
ilar to the DNS, the PDF at the jet centerline obtained with LES no
longer shows a strongpeak correspondingto pure jet � uid. Thus, the
overall tilted PDF behaviorat x=h D 11 seen in the DNS is captured
by the LES.

V. Conclusions
A posteriori tests of subgrid models for the passive scalar evo-

lution in a spatially developing jet are performed in the present
work. Two different subgrid models are compared: the dynamic
Smagorinskymodel and the dynamic mixed model. Simulations are
performed at the low Reynolds number of 3 £ 103 to compare mean
and rms scalar evolution with corresponding DNS data. PDFs of
the passive scalar are also computed because they provide comple-
mentary informationabout the � ow and enablecalculationof higher
moments.

In visualizationsof the passive scalar, the overallqualitativechar-
acteristics of scalar transport are well represented but without the
small-scale details present in DNS. Both subgrid-scalemodels give
reasonableresults regardingthe mean and rms scalar evolutioncom-
pared with DNS and experimental results. However, from a priori
tests, the dynamic mixed model is known to provide better repre-
sentationof the subgrid stress tensor and this has been con� rmed by
our a posteriori simulations; therefore, the dynamic mixed model is
recommended.

Higher scalar moments are also compared.The passivescalar has
a Gaussian distribution at the jet centerline with the transport and
intermittency sharply increasing near the jet borders.

The value of the dynamic constant is also investigated.The con-
stant adapts well to the � ow and is higher than the corresponding
value for the velocity consistentwith observationsof higher mixing
rates of a passive scalar compared to the velocity.

The PDF of the passive scalar obtained by LES at three sections
is obtained and, without any correction for subgrid � uctuations,
comparedwith theDNS results.Althoughthemain characteristicsof
the PDF are well predicted, the LES results are broader than in DNS
and the peaks smoother. The qualitative change from nonmarching
to marching and tilted PDFs during the evolution of the scalar � eld
is captured by LES.
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