
This article was downloaded by: [University of California, San Diego]
On: 17 November 2014, At: 16:21
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Turbulence
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tjot20

Evolution of an asymmetric turbulent
shear layer in a thermocline
Hieu T. Phama & Sutanu Sarkara

a Department of Mechanical and Aerospace Engineering, UC San
Diego, La Jolla, CA, USA
Published online: 14 May 2014.

To cite this article: Hieu T. Pham & Sutanu Sarkar (2014) Evolution of an asymmetric
turbulent shear layer in a thermocline, Journal of Turbulence, 15:7, 449-471, DOI:
10.1080/14685248.2014.914216

To link to this article:  http://dx.doi.org/10.1080/14685248.2014.914216

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/loi/tjot20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14685248.2014.914216
http://dx.doi.org/10.1080/14685248.2014.914216
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Journal of Turbulence, 2014

Vol. 15, No. 7, 449–471, http://dx.doi.org/10.1080/14685248.2014.914216

Evolution of an asymmetric turbulent shear layer in a thermocline

Hieu T. Pham∗ and Sutanu Sarkar

Department of Mechanical and Aerospace Engineering, UC San Diego, La Jolla, CA, USA

(Received 6 January 2014; accepted 6 April 2014)

Large eddy simulations are used to examine the evolution of a shear layer in a thermocline
with non-uniform density stratification. Unlike previous studies, the density in the
present study is continuously stratified and has stratification in the upper half different
from the lower half of the shear layer. The stratification in the upper half is fixed at Ju =
0.05, while the stratification in the lower half is increased to Jd = 0.05, 0.15, 0.25 and
0.35, leading to a progressively stronger asymmetry of the Rig profile in the four cases.
Here, J is the bulk Richardson number and Rig is the gradient Richardson number.
The type of shear instability and the properties of the ensuing turbulence are found
to depend strongly on the degree of asymmetry in stratification. The shear instability
changes from a Kelvin–Helmholtz (KH) mode at Jd = 0.05 to a Holmboe (H) mode at Jd

= 0.35 and exhibits characteristics of both KH and H modes at intermediate values of Jd.
Differences in the evolution among the cases are quantified using density visualisations
and statistics such as mean shear, mean stratification and turbulent kinetic energy.

Keywords: stratified shear layer; turbulence

1. Introduction

Shear instability in a stratified environment plays an important role in many geophysical
flows by providing a pathway to turbulence and mixing. In river plumes, shear instability
observed at the interface between fresh river water and salty ocean water influences how
the plumes spread into an open ocean [1]. Transition layers that separate the surface mixed
layer from the deeper ocean mediate the vertical exchanges of mass, momentum and
energy between the deep ocean and the atmosphere [2]. In the Equatorial Undercurrents
(EUC) where turbulent mixing can alter the cycle of El Nino Southern Oscillations, shear
instability is believed to be the main mechanism that drives the observed intense mixing
[3,4]. Therefore, it is important to study the evolution of shear instabilities and turbulence
in these environmental applications.

Shear instability and ensuing turbulence in stratified fluids has been studied intensively
using linear stability analysis (LSA), numerical simulations and laboratory experiments
[5–13]. However, the majority of the studies focus on the parallel shear flow between two
streams having different but constant density. The centres of the profiles of shear and density
gradient coincide and the profiles are symmetric with respect to their common centre. When
the thicknesses of velocity and density interfaces are comparable, the evolution of the
shear layer exhibits the formation of Kelvin–Helmholtz (KH) billows and their subsequent
breakdown into turbulence [9]. When the thickness of the density interface is significantly
smaller than that of the velocity interface, a symmetric Holmboe (H) instability develops.
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450 H.T. Pham and S. Sarkar

Figure 1. Initial mean profiles exhibit a canonical hyperbolic tangent shear layer in which stratifi-
cation in the lower half varies among four cases: (a) streamwise velocity 〈u〉 (dashed) and density
〈ρ〉 (solid); (b) shear d 〈u〉 /dz (dashed) and squared buoyancy frequency N2 (solid); and (c) gradient
Richardson number Rig. Colours denote the four cases with different stratification in the bottom half
of the shear layer, Jd = 0.05 (black), 0.15 (red), 0.25 (blue) and 0.35 (green).

In the context of LSA of this flow, a KH mode has zero phase speed, while the H mode has a
finite phase speed. The nonlinear evolution of the H mode exhibits density wisps and cusps
[12] rather than the overturning of the central isopycnal seen in the case of the KH mode.
In geophysical flows, the density often varies asymmetrically throughout and beyond the
shear layer in a complex manner. It is therefore necessary to go beyond these canonical
examples to flows where the background density gradient is asymmetric with respect to
the centre of the sheared region, e.g. the configuration of Figure 1 which corresponds to an
upper ocean shear layer in a pycnocline.

Carpenter et al. [14] use direct numerical simulations (DNSs) to investigate the evolution
of shear instability in flows where, different from Figure 1, the asymmetry is due to a
symmetric sheared region being vertically displaced from a symmetric region of density
gradient. We will refer to the configuration of Carpenter et al. [14] as a case with an
eccentric stratification profile. Unlike the sharp transition between KH and H instabilities
seen in the case with coincident centres of shear and density interfaces, a gradual transition
from KH-type overturning to gentler H-type density wisps is found as the distance between
the interfaces increases. LSA of this case with eccentric stratification does not show a clear
change from zero to non-zero instability phase speed and nonlinear evolution shows shear
instability with both KH and H characteristics during the gradual transition from the KH
to H mode. Carpenter et al. [15] explain the transition from the KH to H mode by splitting
the growth rate into a KH contribution and an H contribution based on interpreting the
instability as the result of the interaction of independently propagating interfacial waves.
At low stratification, the KH contribution is the largest. At large stratification, the H
contribution is the largest. At intermediate stratification, both KH and H modes contribute
to the growth rate in the asymmetric case, leading to mixed characteristics and a gradual
transition from the KH to H mode with increasing stratification. In contrast, the analysis of
the case with concentric shear and density profiles shows that the KH growth rate decreases
sharply at the same point that the H growth rate increases sharply, resulting in a sharp
transition between KH and H instability modes.

The density profiles used in the aforementioned studies of transition from KH to H
instability have zero gradient in regions outside the shear layer and, therefore, vertically
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propagating internal waves found in situations with stratification outside the sheared region
[16–19] are absent. Pham et al. [19] use DNSs to reveal energetic wave fields in regions
below the shear layer where the stratification is sufficiently larger than inside the shear layer,
and to show that the nonlinear evolution of the shear instability is significantly modified
owing to the presence of wave radiation. Even though the stratification profile in Pham
et al. [19] is asymmetric with respect to the shear layer centre, the density gradient is
uniform throughout the shear layer and only KH shear instability is observed. In an attempt
to simulate shear instability in the EUC, Pham et al. [4] present a single DNS in which
the density gradient varies asymmetrically inside the shear layer. The study shows the
development of asymmetric H instability in the upper weakly stratified portion of the shear
layer, while internal waves are noted in the lower strongly stratified portion. The present
work goes beyond [4] by exploring how different levels of stratification inside the shear
layer can affect the evolution of asymmetric shear instability.

A parallel shear flow with an asymmetric density gradient inside the shear layer is
considered, as shown in Figure 1. Cases with different levels of stratification are simulated
and, as can be seen, KH and H modes as well as transitional modes are present depending on
the level of stratification. The evolution of coherent structures such as billows and density
wisps as well as the excitation of internal waves is contrasted among the cases. Profiles
of shear, density gradient, gradient Richardson number as well as the budgets of turbulent
kinetic energy (TKE) are examined in each case so that turbulence can be quantified for
each type of shear instability.

2. Model setup

In the present study, we consider a parallel shear flow between two streams flowing in
opposing directions, as shown in Figure 1(a). The streamwise velocity 〈u∗〉 has a hyperbolic
tangent profile with a velocity difference �U∗ and an initial thickness δ∗

ω,0 as follows:

〈
u∗〉 (z∗) = �U ∗

2
tanh

(
z∗

0.5δ∗
ω,0

)
.

The thickness of the shear layer δ∗
ω is defined as �U∗/max(|d 〈u∗〉 /dz∗|). Here, we use the

superscript ∗ to denote dimensional quantities, subscript 0 to denote initial quantities at
time t∗ = 0 and angle brackets 〈·〉 to indicate quantities that are horizontally averaged in
the streamwise (x) and spanwise (y) directions.

The density profiles ρ∗ have a sharp interface at the centre of the shear layer which
separates a weakly stratified upper half from a strongly stratified lower half. The profiles of
squared buoyancy frequency N∗2 = −g∗/ρ∗

0d 〈ρ∗〉 /dz∗ shown in Figure 1(b) are described
by the following expression:

N∗2 (z) = N∗2
u + N∗2

d

2
+ N∗2

u − N∗2
d

2
tanh

(
z∗

0.1δ∗
ω,0

)
,

where N∗2
u and N∗2

d are the squared buoyancy frequencies in the upper and lower halves of
the shear layer, respectively.
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452 H.T. Pham and S. Sarkar

Using the velocity difference �U∗, the thickness δ∗
ω,0 and ρ∗

0δ∗
ω,0N

∗2
u /g as the charac-

teristic velocity, length and density scales, respectively, the large eddy simulation (LES)
equations for filtered motion take the following non-dimensional forms:

Mass:

∂uj

∂xj

= 0 , (1)

Momentum:

∂ui

∂t
+ ∂

(
uj ui

)
∂xj

= −∂P

∂xi

+ 1

Re0

∂2ui

∂xj ∂xj

− Juρ ′ − ∂τij

∂xj

, (2)

Density:

∂ρ

∂t
+ ∂

(
ujρ

)
∂xj

= 1

Re0Pr

∂2ρ

∂xj∂xj

− ∂Qj

∂xj

, (3)

where the overbar denotes filtered quantities and g denotes the gravity acting in the vertical
(z) direction. The subgrid stress τ ij and subgrid buoyancy flux Qj are to be parameterised by
an LES model. The non-dimensional parameters in this flow are: Reynolds number Re0 =
�U ∗δ∗

ω,0/ν
∗, Richardson number in the upper half of the shear layer Ju = N∗2

u δ∗2
w,o/�U ∗2

and Prandtl number Pr = v∗/k∗, where ν∗ and κ∗ are the molecular viscosity and diffusivity,
respectively.

Four simulations are performed at Re0 = 5000, Pr = 7 and Ju = 0.05. While fixing Ju in
all cases, the stratification Jd in the lower half of the shear layer is varied between the cases
to create asymmetry in the variation of gradient Richardson number, Rig = N2/S2, within the
shear layer, as shown in Figure 1. In the case of Jd = 0.05, the shear layer has uniform stratifi-
cation, and this case with a symmetric profile of Rig is taken as the base case to be contrasted
with the other asymmetric cases. The resulting gradient Richardson number profiles shown
in Figure 1(c) have their minimum value displaced further into the upper half of the shear
layer as Jd increases. The objective of the present study is to investigate how the asymmetry
of the initial Rig profiles affects the evolution of shear instability and turbulence in the shear
layer.

The present study adopts the dynamic eddy viscosity model as described in Germano
et al. [20] to compute the subgrid stresses and subgrid buoyancy fluxes. The subgrid stresses
and subgrid buoyancy fluxes are implemented as follows:

τij = −2Cd�
2 ∣∣S∣∣ Sij (4)

and

Qj = −Cθ�
2 ∣∣S∣∣ ∂ρ

∂xj

, (5)
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where � is the filter width, Sij = 1/2
(
∂ui/∂xj + ∂uj/∂xi

)
is the resolved strain rate tensor

and
∣∣S∣∣ is defined as

√
2SijSij . The subgrid eddy viscosity and diffusivity are given by

νsgs = Cd�
2 ∣∣S∣∣ , (6)

κsgs = Cθ�
2 ∣∣S∣∣ , (7)

respectively. The model coefficients Cd and Cθ are determined by a dynamic procedure in
which a test filter is applied to the resolved velocity and density fields. Quantities denoted
by ·̂ are double filtered with both the test and LES filters. The dynamic coefficients are
given by

Cd = −1

2

〈
LijMij

〉〈
MijMij

〉 ,

Cθ = −1

2

〈
Lθ

i M
θ
i

〉〈
Mθ

j Mθ
j

〉 ,

where

Lij = ûiuj − ûi ûj ,

Mij = �̂
2 ∣̂∣S∣∣Ŝij − ̂

�
2 ∣∣S∣∣ Sij ,

Lθ
i = ρ̂ ui − ρ̂ ûi ,

Mθ
i = �̂

2 ∣̂∣S∣∣ ∂̂ρ

∂xi

−
̂

�
2 ∣∣S∣∣ ∂ρ

∂xi

.

The test filter is applied in physical space using an explicit three-point trapezoidal rule. The

ratio of the test to LES filter width, �̂/�, is taken to be
√

6.
A computational domain of Lx = 30.84, Ly = 7.8 and Lz = 107 is discretised using a

grid of 256 × 64 × 512 points. The grid spacing is uniform in the x and y directions. The
vertical grid spacing is uniform with �z = 0.06 in the region −5 < z < 5 and stretched at a
rate of 2% outside this region. The numerical methods used in the present study are similar
to those in [21,22]. A second-order central difference in space and a third-order Runge–
Kutta marching in time are used to integrate Equations (2)–(3). A multigrid Poisson solver
is used to enforce an incompressibility condition. A sponge region is used in the regions
z < −40 and z > 40 to prevent wave reflections from the upper and lower boundaries.
During the early evolution of the KH billows and the H wisps, a sharp density gradient
forms over just one grid point causing numerical oscillations on both sides of the gradient.
An explicit top-hat filter is selectively applied to the density field at every 10 time steps to
remove the oscillations. The filter is applied only at the nodes i where the following criteria
are satisfied:

κsgs/κ < 0.5,

[ρ(i + 1) − ρ(i)] [ρ(i) − ρ(i − 1)] < 0,[
ρ(i + 1) − ρ(i)

] [
ρ(i) − ρ(i − 1)

]
< 0 .
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454 H.T. Pham and S. Sarkar

Here, i denotes the grid index, the double bars indicate the new filtered value of density,
and the filtering is applied in all three directions. The use of selective criteria to improve
the LES results at high Re has been discussed in Pham and Sarkar [23] who simulated the
canonical shear layer between two free streams with different constant values of density.
For convenience during discussion, we simplify the notation by dropping the asterisks
and the overbars. Hereafter, parameters of interest are understood to be filtered and non-
dimensional.

Small-amplitude broadband velocity perturbations are added to the mean velocity profile
prescribed above to initiate the growth of shear instabilities. The perturbations have the
following energy spectrum:

E (k) =
(

k

k0

)4

exp

[
−2

(
k

k0

)2
]

,

where k is the horizontal wavenumber and k0 is set to be 20.0. The amplitude of the
perturbations is 0.1%�U. The horizontal boundaries have periodic conditions, while the
top and bottom boundaries have the following conditions:

u (zmin) = 1

2
, u (zmax) = −1

2
,

v (zmin) = v (zmax) = 0 ,

w (zmin) = w (zmax) = 0 ,

∂p

∂z
(zmin) = ∂p

∂z
(zmax) = 0 ,

∂ρ

∂z
(zmin) = −Jd,

∂ρ

∂z
(zmax) = −Ju .

In the following sections, we rely on the TKE budget to characterise the evolution of
turbulence in the shear layer. Therefore, it is convenient to introduce in advance the TKE
budget, which is described by the following equation:

dK

dt
= P − ε + B − dT3

dz
− dT3,sgs

dz
, (8)

where K = 1/2
〈
u′

iu
′
i

〉
is the TKE, P is the turbulent production,

P = − 〈
u′w′〉 d 〈u〉

dz
,

ε is the total dissipation rate consisting of resolved and subgrid contributions,

ε = 2

Re0

〈
S ′

ij S
′
ij

〉 − 〈
τ ′
ij

∂u′
i

∂xj

〉
,

and B is the buoyancy flux,

B = −Ju

〈
ρ ′w′〉 .
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The transport term dT3/dz is defined with

T3 = 1

2

〈
w′u′

iu
′
i

〉 + 〈
p′w′〉
ρ0

− 2

Re0

〈
u′

iS
′
3i

〉
and the subgrid transport dT3,sgs/dz is defined with

T3,sgs = 〈
τ ′
i3u

′
i

〉
.

3. Evolution of asymmetric shear instabilities

Simulations in the present study show the development of shear instabilities as the precursor
to turbulence in all four cases. In this section, we provide visualisations of density fields to
contrast the anatomy of different types of shear instability. Carpenter et al. [15] chose an
eccentric configuration with relative displacement of the centre of a compact sheared region
with respect to the centre of a compact density gradient region, while we choose a different
configuration with the two regions above and below the centre of the shear layer having
different values of density gradient. Nevertheless, both configurations have Rig profiles that
are asymmetric with respect to the shear layer centre and, similar to [15], we find shear
instabilities ranging from a pure KH mode through a transitional instability mode to a pure
H mode.

In the symmetric case Jd = 0.05, KH shear instability is seen to develop as shown in
Figure 2(a). An intrinsic property of a KH mode is the formation of billows in the centre
of the shear layer. The billows lift heavy fluids up, push light fluids down and mix up the
density interfaces inside the shear layer. Five billows are seen over the horizontal domain.
The vertical extent of the billows becomes twice as large as the initial thickness δω before
the billows break down into smaller scale turbulence. KH billows can corotate and pair
before the shear layer becomes turbulent. However, pairing does not occur in the present
high-Re simulations. Billows at high Reynolds number are rapidly distorted by the growth
of smaller scale fluctuations, as noted in Pham and Sarkar [24], that inhibit corotation and
pairing.

In the asymmetric cases with higher stratification, Jd = 0.15 and 0.25, the structure of
the instability has a resemblance to KH billows, as shown in Figure 2(b) and 2(c). Similar
to the symmetric case Jd = 0.05 in Figure 2(a), five billows are seen in the shear layer,
indicating the wavelength of the most unstable mode has not changed as Jd increases.
However, the vertical extent of the billows becomes smaller in the cases with stronger
stratification. In the case of Jd = 0.25, the central isopycnal does not roll up and the billows
only occupy the upper half of the shear layer, leaving the bottom half unmixed at this time.
The growth rate of the shear instabilities also decreases with increasing stratification in
the cases with KH billows. The density fields in Figure 2(b) are shown at times when the
integrated production across the shear layer peaks. At these times, the billows reach their
maximum size before transition to turbulence. The billows in the case of Jd = 0.25 reach
their maximum size at the earliest time t = 78 which indicates the largest growth rate
among the cases. In the cases of Jd = 0.15 and 0.25, the billows have their maximum size
at significantly later times owing to slower growth rates. It is worth noting that the growth
rate discussed here is different from that obtained from LSA. The discussed growth rate
includes both the growth of shear instability from infinitesimal perturbations as in LSA
and the enlargement of the billows, which is a nonlinear process. The LSA of Carpenter
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456 H.T. Pham and S. Sarkar

Figure 2. Snapshots of the density field contrast the evolution of shear instabilities in four cases.
The snapshots are shown at times when the integrated production peaks. In the symmetric case of Jd

= 0.05 (a), KH billows form in the shear layer with a roll-up and overturning of the central isopycnal.
As Jd increases (b, c), the billows become smaller and concentrate toward the upper half of the shear
layer. In the case of Jd = 0.35 (d), roll-up of the central isopycnal is replaced by H wisps that eject
heavier fluid upward.

et al. [15] also supports the inhibition of growth rate when the stratification increases. That
study further suggests that the contribution of H modes becomes larger with increasing
stratification in the regime of transitional modes. The cases of Jd = 0.15 and 0.25 in the
present study have the stratification belonging to the transition regime, and the development
of the shear instabilities in these cases has characteristics similar to the results of Carpenter
et al. [15], as discussed below.
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In the case of Jd = 0.35, the instability exhibits features of an H shear instability, as
shown in Figure 2(d). Unlike KH modes, the nonlinear evolution of an H mode includes
formation of thin density wisps and cusps. While the KH billows vigorously stir and
overturn the density interface inside the shear layer as in the case of Jd = 0.05, the wisps
gently scour the interface. At times, the H shear instability ejects a volume of heavy fluid
from the density interface upward into regions above the shear layer, as seen at x = 25 in
Figure 2(d). Features of wisps and cusps and the upward ejection of heavy fluid have been
discussed at length in previous studies [4,11,12,14]. The wavelength of the H instability in
the case of Jd = 0.25 is shorter than the wavelength seen in the other cases. Seven wisps are
seen to span the horizontal domain. Noting the time at which the peak integrated production
occurs, t = 101, the growth rate of the H instability in the case of Jd = 0.35 is comparable
to the rate in the case of Jd = 0.15, but significantly larger than the rate in the case of Jd =
0.25. By increasing the stratification from Jd = 0.25 to Jd = 0.35, the unstable shear layer
moves from the transitional regime into the H regime. Features of KH modes observed in
the other three cases are not seen in the case of Jd = 0.35.

Another key difference in the structure of the shear instabilities is in their phase speed.
Figure 3 shows the x–t diagrams of a streamwise density probe taken at the centre of the
shear layer, z = 0, in the four simulated cases. During the growth period of the instabilities,
t < 150, coherent phase lines are observed in all cases. The tilt angle of the phase lines
denotes the phase speeds of the shear instabilities. In the case of Jd = 0.05, the phase lines
in Figure 3(a) are horizontal corresponding to a zero phase speed. The KH instability in
this case is therefore stationary with respect to the simulation frame. In the other cases, the
phase lines tilt leftward with a negative slope corresponding to a negative phase speed. The
shear instabilities in these cases propagate toward the negative x direction. In the transitional
regime, i.e. in the cases of Jd = 0.15 and 0.25, increase in stratification also increases the
(negative) phase speed. The phase speeds in the cases of Jd = 0.25 and 0.35 are similar. It
is noted that the initial growth of the instabilities does not occur at the centre of the shear
layer, z = 0, in all cases. The location of initial growth, namely instability levels, coincides
with the depth where the phase speed of the instability matches with the mean streamwise
velocity 〈u〉. In the case of Jd = 0.05, the phase speed is zero and 〈u〉 at z = 0 is also zero
initially, so the instability level is at z = 0. In the other three cases, the phase speeds have
negative values, so the instability levels progressively move upward into the upper half of
the shear layer where 〈u〉 is negative. Recalling the initial Rig profiles in Figure 1(c), as Jd

increases, the location of minimum Rig shifts upward similar to the instability level. In the
present simulations, the instability level is found to coincide with the location of minimum
Rig.

After the development of billows and wisps, the shear layer transitions into turbulence,
as shown in Figure 4(a)–(d). The figures are taken at times when the dissipation integrated
over the shear layer peaks. Turbulent fluctuations having a broad range of scales are seen
in the shear layer. In the case of Jd = 0.05, after the breakdown of the primary KH billows,
secondary density overturns are seen at the edges of the shear layer. For example, density
overturns are seen at x = 5 and x = 30 at the lower edge of the shear layer in Figure 4(a). It
is noted that the asymmetry in Figure 4(a) with overturns occurring only in the lower edge
of the shear layer is due to intermittency. The overturns also occur at the upper edge of the
shear layer at other times, and the resulting evolution of the mean shear layer is symmetric
in this case. As Jd increases, turbulent fluctuations concentrate more in the upper half of the
shear layer where the stratification is weaker, as can be seen in Figure 4(b)–(d). Secondary
density overturns also occur intermittently at the lower edges of the shear layer in the cases
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458 H.T. Pham and S. Sarkar

Figure 3. Phase speed of the shear instabilities is shown in x–t diagrams of a density probe taken
at y = 3.6 and z = 0. In the symmetric case of Jd = 0.5 (a), the phase line is horizontal denoting a
zero phase speed of a stationary unstable mode. In other cases (b–d), the phase lines tilt downward,
indicative of propagating unstable modes. Dotted lines denote phase lines whose slope is equal to the
phase speed. Colour scale ranges from 0.997 (red) to 1.003 (blue).

of Jd = 0.15 and 0.25. Density overturns are seen at x = 2 in Figure 4(b) and at x = 14
and 20 in Figure 4(c). Secondary density overturns have been reported in previous studies
[4,9,12]. The DNS of H shear instability in Pham et al. [4] illustrates the development of
secondary KH-like overturns on the cusps of the primary H waves. The secondary KH-like
overturns in that study penetrates downward and causes intermittent patches of turbulent
mixing in the lower half of the shear layer. In the present study, the secondary overturns
also penetrate downward and cause mixing, as shown in Figure 4(b) and 4(c).

4. Internal wave field

Shear instability in flows with stratification that extends beyond the shear layer can excite
internal waves that transport momentum and energy to regions far away from the shear layer.
The conditions for the waves to be excited as well as the characteristics of the wave fields
have been shown in previous studies to follow linear wave theory. The wavelength, frequency
and propagating angles of the internal waves match with those of the KH shear instability
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Figure 4. Snapshots of the density fields show transition into turbulence in the shear layer. The
snapshots are shown at times when the integrated dissipation rate peaks. As Jd increases (a–d),
the turbulent layer becomes thinner and concentrates toward the upper half of the shear layer where
the stratification is weaker.

in the previous studies, e.g. [19]. The shear instabilities in the present study cannot directly
excite internal waves; however, internal waves having different wavelengths are observed
in regions below the shear layer. In this section, we will provide an explanation why the
shear instabilities cannot excite waves and discuss the properties of the waves observed at
depths.

Linear wave theory suggests that an internal wave can propagate in a stratified medium
when its squared vertical wavenumber m2 is positive in the medium. The squared vertical
wavenumber m2 is derived from the Taylor–Goldstein equation and takes the following
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460 H.T. Pham and S. Sarkar

Figure 5. Squared vertical wavenumber m2 shows negative values in regions below the shear layer in
all simulated cases, and therefore, the shear instabilities cannot excite internal waves into this region.

form:

m2 = N2

[c − 〈u〉]2
+ ∂2 〈u〉 /∂2z

c − 〈u〉 − k2 , (9)

where c is the wave phase speed and k is the horizontal wavenumber. From Figure 3, the
horizontal wavenumber k of the shear instabilities is found to be 1.42 in the case of Jd =
0.35, and 1.02 in the other three cases. With the phase speeds given in Figure 3 and the
initial mean profiles of velocity and stratification, the profiles of m2 are plotted in Figure 5.
In all cases, values of m2 are negative in the region below the shear layer, and therefore,
the shear instabilities cannot excite internal waves into this region. The DNS of Pham et al.
[19] shows wave excitation by KH shear instabilities in the cases with Jd > 0.18. In the
present study, wave excitation does not occur in the cases with Jd = 0.25 and 0.35 because
the characteristics of the shear instabilities in the present study are different. In both these
cases, the wavelength is shorter and the phase speed has a negative value. From Equa-
tion (9), a shorter wavelength would have a larger wavenumber k making m2 become
smaller. A negative phase speed c would cause the denominator in the first term on the
right-hand side of Equation (9) to be larger since 〈u〉 is positive in the region below the
shear layer. With a larger denominator, the first term would become smaller. Furthermore, a
negative phase speed also makes the the second term on the right-hand side of Equation (9)
to become more negative. As a net result, a negative phase speed tends to make m2 become
smaller and negative in the region below the shear layer and prevents wave excitation into
the region.

Nevertheless, internal waves are seen in the region below the shear layer. Wave momen-
tum flux 〈u′w′〉 in Figure 6(a) and wave energy flux 〈p′w′〉 in Figure 6(b) measured at depth
z = −5 indicate multiple bursts of internal waves propagating down from the shear layer in
all four cases. In the case of Jd = 0.05, there are discrete peaks in the wave fluxes at times t
= 114, 170 and 208, and a later peak has a higher amplitude than the previous one. While
the primary shear instability in this case, as shown in Figure 2(a), cannot excite internal
waves, the nonlinear evolution of the shear instabilities can generate density perturbations
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Figure 6. Vertical fluxes at depth z = −5 indicate multiple bursts of internal waves propagating
downward away from the shear layer in all four cases: (a) momentum flux 〈u′w′〉 and (b) energy flux
〈p′w′〉.

that can excite internal waves. It is noted that while the primary modes of the shear insta-
bilities have negative m2, their subharmonics can have positive m2 since the wavenumber
k of the subharmonics is smaller. The subharmonics of the shear instabilities can excite
waves into regions below the shear layer. Broadband turbulence can also excite internal
waves [25]; however, visualisations of fluctuating density fields show wave bursts with
discrete wavelength and constant propagation angle unlike those generated by broadband
turbulence, as will be discussed below.

Multiple bursts of internal waves are seen in each of the simulated cases, and the wave
characteristics differ from burst to burst. For illustration, Figure 7 shows the wave fields of
the first burst in each case. The waves in the figures clearly have a wavelength different from
the wavelength of the fundamental shear instability mode. Furthermore, the wavelength and
wave angle are different among the cases. The wavelength and wave angles are difficult to
identify in the cases of Jd = 0.15 and 0.35. The case of Jd = 0.05 has wave propagation with
the largest wavelength corresponding to a horizontal wavenumber k = 0.2. The wavelength
in the case of Jd = 0.25 is shorter with a wavenumber k = 0.4. In the case of Jd = 0.05, the
waves have a propagating angle θ = 39.8◦ to the vertical, and is equal to 49.2◦ in the case
of Jd = 0.25. Using a dispersion relationship for linear internal waves, � = N cos θ , the
frequency � is equal to 0.17 and 0.33 in the cases with Jd = 0.05 and 0.25, respectively.
These frequencies are significantly smaller than the buoyancy frequency in regions below
the shear layer. Since these waves have a measurable discrete frequency, they are not excited
by broadband turbulence in the shear layer. It is likely that the waves are excited by the
subharmonics of the shear instabilities.

5. Evolution of the mean flow

In Section 3, we have shown with instantaneous snapshots of the density field that the shear
layers evolve asymmetrically as Jd increases. The asymmetry in the stratification profiles
between the upper and lower halves of the shear layer also affects the momentum fields.
In the asymmetric cases, the stronger stratification in the lower half of the shear layer
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462 H.T. Pham and S. Sarkar

Figure 7. Snapshots of the fluctuating density fields ρ ′ show the structure of the internal wave fields.
In all cases, the wavelength of internal waves at depths is different from that of the shear instabilities
seen inside the shear layer.

reduces the ability of the shear instabilities and broadband turbulence to tap the momentum
and kinetic energy available in the region. As a result, the thickness of the shear layer is
reduced, the extraction of mean kinetic energy (MKE) into fluctuation energy is less, and
the changes in mean profiles are skewed toward the upper half of the shear layer. In this
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Figure 8. (a) Evolution of momentum thickness δθ indicates a significant reduction in the growth
rate of the shear layers as Jd increases. (b) Change in integrated MKE is also less as Jd increases.

section, we contrast these effects among the cases to illustrate the influences of asymmetry
in the stratification.

Figure 8(a) depicts the evolution of the momentum thickness δθ which is defined as

δθ (t) =
∫ zu

zl

[
1

4
− 〈u (t)〉2

]
dz ,

where zl and zu are the lower and upper bounds, respectively, of the computational domain
excluding the sponge. In all cases, the evolution of δθ includes three distinct periods. During
the first period, t < 50, the shear instability grows from infinitesimal perturbations leading
to a gentle growth of δθ . During the second period, 50 < t < 150, δθ exhibits a rapid
linear growth. The thickness grows significantly due to the enlargement of the billows and
the wisps shown in Figure 2 as well as by turbulent entrainment. Finally, during the third
period, δθ plateaus at a constant value for the rest of the simulation, indicating that no more
momentum is extracted from the background shear. In all cases, the final values of δθ are
dictated by the growth rate and the duration of the second period. In the symmetric case of
Jd = 0.05, this period begins early and has the longest duration. As a result, the final value
of δθ is largest among the cases. This final value is also comparable to the values reported
in previous studies of symmetric shear layer [9,10,24]. As Jd increases, like in the cases
with Jd = 0.15 and 0.25, the secondary period commences later and has a shorter duration.
In these two cases, the stronger stratification in the lower half of the shear layer prevents
the KH billows to enlarge as much as in the case of Jd = 0.05. The final value of δθ in the
case of Jd = 0.15 is 30% smaller than that in the case of Jd = 0.05. In the case of Jd = 0.25,
δθ is further reduced to about 50%. Increasing Jd significantly reduces the size of the KH
billows and δθ grows less. In the case of Jd = 0.35 where H wisps are seen, even though
the second period commences earlier than in the case of Jd = 0.25, it only lasts for a short
time period. The momentum thickness grows the least in this case.

Similar to the reduction in the momentum thickness, the extraction of MKE is also
less as Jd increases. Here, MKE is computed as 1/2ρ0 〈u〉2 and integrated from zl to zu.
Figure 8(b) contrasts the evolution of the integrated MKE, and the case of Jd = 0.05 shows
the largest extraction of MKE among the simulated cases. In this case, approximately 30%
of the MKE is extracted by the shear instability and turbulence. In the cases of Jd = 0.15
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464 H.T. Pham and S. Sarkar

and 0.25, the extraction is reduced to 18% and 10%, respectively. The extraction is only 5%
in the case of Jd = 0.35. A reduction in the extraction of MKE is a precursor for a reduction
in turbulent production, and therefore, terms in TKE budget are significantly altered, as
will be discussed in the next section.

The evolution of mean shear and stratification differs qualitatively among the cases
with changes from the initial shape being increasingly skewed with increasing Jd owing
to the asymmetric influence of buoyancy. Figure 9(a) and 9(b) contrasts the mean shear
profiles d 〈u〉/dz between the symmetric case of Jd = 0.05 and the asymmetric case of Jd

= 0.25, respectively. In the case of Jd = 0.05, the shear profiles shown at three different
times remain symmetric across the centre of the shear layer, z = 0, throughout the evolution
of the shear instability. During the growth of the KH billows between times t = 0 and
78, the shear at z = 0 is reduced and the profiles thicken. When the shear layer becomes
turbulent, the shear profile at t = 150 has peaks at the upper and lower edges of the
shear layer. The peaks are symmetrically displaced from the centre of the shear layer. The
peak in shear at the lower edge at this time coincides with the density overturns in the
same region, as shown in Figure 4(a). Different from the case of Jd = 0.05, the shear
profiles in the case of Jd = 0.25 shown in Figure 9(b) exhibit asymmetry across z = 0.
Between times t = 0 and 136 when the KH billows develop, the shear at the centre is
reduced, and the profiles thicken similar to the case of Jd = 0.05. However, the thickening
is uneven with the upper half of the shear layer growing more. At time t = 136, the shear
magnitude in the upper half is significantly smaller than that in the lower half. At time
t = 182, the turbulence in the upper half of the shear layer continues to extract more
energy and drives the shear further down. Meanwhile, the shear magnitude in the lower half
increases. The asymmetric evolution in the shear profiles is consistent with the reduction
in MKE extraction. Due to the strong stratification in the lower half of the shear layer in the
case of Jd = 0.25, the shear instability cannot extract MKE in this region. The extraction
of MKE is substantial only in the upper half, leading to a significant reduction of the mean
shear.

Similar to the evolution of the shear profiles, the profiles of N2 at various times are
symmetric in the case of Jd = 0.05, as shown in Figure 9(c). The N2 profiles in this
case have values in the centre of the shear layer that decrease in time due to mixing.
Stratification at the edges of the shear layer gets stronger in time with values larger than
the initial stratification. Overshoot in N2 profiles at the edges of the shear layer has been
noted in previous studies [19,24] too. The overshoot in the case of Jd = 0.05 is symmetric
across z = 0 at both times t = 78 and 150. In the case of Jd = 0.25, the N2 profile, which
is initially asymmetric, also exhibits overshoots at later times as the shear layer evolves, as
shown in Figure 9(d). However, the overshoots occur closer to the centre of the shear layer
when compared with the case of Jd = 0.05. When the N2 profile at late time is compared to
the initial profile, the case of Jd = 0.05 shows a significant reduction in N2 over the entire
shear layer −1 < z < 1. The mixing is equally efficient between the upper and lower halves
of the shear layer. In contrast, the reduction of N2 in the case of Jd = 0.25 is only notable
in a thin region immediately below the centre of the shear layer, −0.25 < z < 0. While the
instability level in the case of Jd = 0.25 occurs in the upper half of the shear layer and a
large amount of MKE is extracted in this region, mixing is most significant in the lower
half where the stratification is initially large.

The evolution of the gradient Richardson number Rig is depicted in Figure 9(e) and 9(f)
for the cases of Jd = 0.05 and 0.25, respectively. In both cases, Rig grows to larger values at
the centre of the shear layer, and the values are greater than 1 at the end of the simulations.
Furthermore, both cases show profiles of Rig having local minima at the edges of the shear

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 1
6:

21
 1

7 
N

ov
em

be
r 

20
14

 



Journal of Turbulence 465

Figure 9. Differences in the mean profiles between symmetric Jd = 0.05 (a, c, e) and asymmetric
Jd = 0.25 (b, d, f) shear layers. Evolution of mean shear d 〈u〉/dz is shown in (a, b), squared buoyancy
frequency N2 in (c, d) and gradient Richardson number in (e, f). Colours indicate different times
during the simulations.

layers at late time. The Rig minima are caused by the enhanced shear that develops in these
regions. In the case of Jd = 0.05, the minimum Rig at the lower edge is larger than the value
seen in the upper edge at time t = 150. This is due to the slight difference in the magnitude
of d 〈u〉/dz and N2 between the edges, as shown in Figure 9(a) and 9(c). In the case of Jd
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466 H.T. Pham and S. Sarkar

Figure 10. (a) TKE integrated across the shear layer −5 < z < 5 is smaller in the case of larger Jd.
(b) Profiles of TKE at different times show asymmetry within the shear layer in the case of Jd = 0.25.

= 0.25, the shear and the stratification at the lower edge are significantly larger than the
values at the upper edge, and Rig is smaller at the lower edge.

It is necessary to address the significance of small Rig in the lower half of the shear layer
at late time in the case of Jd = 0.25. The value of Rig ≈ 0.35 in this region is marginally
stable, i.e. it is not significantly larger than the critical value for shear instability, Rig =
0.25. Furthermore, there is a large shear and strong MKE in this region. As KH billows
develop in the upper half of the shear layer, the shear increases in the lower half and Rig
decreases to marginal values in the lower half. The peak shear in the lower half at time
t = 182 is 80% of the shear at z = 0 at initial time, as shown in Figure 9(b). The stability
condition seen in the lower half of the shear layer in the case of Jd = 0.25 of the present
study is similar to the observations in the upper flank of the EUC where marginally-stable
Rig and strong shear are reported. The observations of Smyth et al. [26] and the numerical
simulation of Pham et al. [27] indicate that a downward momentum flux from the region
above the EUC can enhance the shear, cause Rig to be subcritical, and drive mixing in the
marginally-stable EUC region. In the present study, the shear in the lower half of the shear
layer does not increase enough to drive Rig below 0.25.

6. Turbulent kinetic energy

In the previous section, we have shown that the extraction of MKE decreases as the
stratification Jd increases. In the present study, the initial MKE is the only source of energy
that can be used to generate turbulence and mix the fluids. With a lower amount of MKE
extraction, the TKE is significantly reduced. In this section, we analyse the TKE budget
to illustrate how the stratification in the lower half of the shear layer affects the terms in
the budget. Specifically, all terms in the budget are shown to decrease as Jd increases. The
profiles of the terms in the TKE budget are asymmetric across the centre of the shear layer,
similar to the discussed mean profiles.

The amount of TKE extracted from the reservoir of background shear is shown in
Figure 10(a) for the four simulated cases. The values plotted in the figure are integrated
over the shear layer in the region −5 < z < 5. In the figure, the peak values of TKE decrease
as Jd increases. The peak value in the case of Jd = 0.35 is only 10% of the value in the case
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Figure 11. TKE budgets in the shear layer exhibit symmetry in the case of Jd = 0.25 (a) and
asymmetry in the case of Jd = 0.25 (b). Colours indicate different terms in the budget.

of Jd = 0.05. In the three cases with KH billows, Jd = 0.05, 0.15 and 0.025, the peak TKE
occurs earlier and has a larger magnitude in the case of smaller Jd. However, the integrated
TKE is comparable at late time t = 250 in the three cases. It is noted that the peak TKE
occurs earlier than the time when the MKE begins to plateau in Figure 8(b). In the case of
Jd = 0.05, the TKE peaks at time t = 128 while the MKE does not plateau until t > 150.
As KH billows break down to turbulence, the MKE is continued to be extracted; however,
the TKE does not increase any longer. The dissipation rate becomes significant during this
time, causing the integrated TKE to deplete.

As Jd increases, the profiles of TKE exhibit asymmetry as the shear layer evolves.
Figure 10(b) shows TKE profiles at times t = 136 and 182 in the case of Jd = 0.25. Even
though TKE increases in both the upper and the lower halves of the shear layer between the
two times, the profiles are thinner in the lower half. The peak TKE occurs in the lower half
of the shear layer at both times. It is noted that TKE in the present study includes both wave
kinetic energy and broadband TKE. As the KH billows in the case of Jd = 0.25 develop in
the upper half of the shear layer, it transports wave energy to the lower half. Since Figure 5
shows m2 > 0 in the lower half of the shear layer, internal waves excited by the KH billows
can propagate down into this region. The waves are trapped in this region since m2 < 0
in the region below the shear layer. As the waves pile up in the lower half, this region has
larger TKE than the upper half as seen at time t = 136 in Figure 10(b). Between times
t = 136 and t = 182, TKE increases most significantly in the lower half of the shear layer
and secondary density overturns occur as previously shown in Figure 4(c). The trapping of
wave energy in the lower half of the shear layer as well as the secondary overturns has been
noted in the DNS of an asymmetric H shear instability by Pham et al. [4].

The asymmetry is also observed in the profiles of the terms in the TKE budgets in the
cases with large Jd. The budgets at times when the peak integrated dissipation occurs in
the cases of Jd = 0.05 and 0.25 are contrasted in Figure 11(a) and 11(b), respectively. In
the symmetric case of Jd = 0.05, the production has peaks at the edges of the shear layer
where the magnitude of shear is maximum, as shown in Figure 9(c). The peaks are equally
displaced from the centre of the shear layer and have comparable values. The profiles of
the dissipation and the buoyancy flux spread comparably in the upper and lower halves. In
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Figure 12. Integrated TKE budgets across the shear layer −5 < z < 5 show a reduction in all
components: (a) production P, (b) dissipation ε, (c) buoyancy flux B and (d) transport dT3/dz. Colours
indicate different cases.

the asymmetric case of Jd = 0.25, the production profile is asymmetric with a large peak
in the upper half and a smaller peak in the lower half. The profile of the buoyancy flux
indicates an opposite trend with a larger peak in the lower half. It is interesting that when
the integrated dissipation is maximum, most of the dissipation occurs in the lower half of
the shear layer where the stratification is large. The large dissipation and buoyancy flux in
the lower half of the shear layer are the results of secondary density overturns which have
been discussed in previous sections.

As the stratification Jd increases, the production, dissipation, buoyancy flux and trans-
port integrated over the shear layer −5 < z < 5 are all reduced as shown in Figure 12. The
peak value in the integrated production in Figure 12(a) is largest in the case of Jd = 0.05 and
progressively decreases with increasing Jd. The peak production in the case of Jd = 0.35
is only 20% as large as the peak in the case of Jd = 0.05. When Figure 12(a) is compared
to Figure 10(a), the integrated production peaks at the same time as the integrated TKE in
the case of Jd = 0.35. In the other three cases, the production peaks significantly earlier
than the TKE. In the case of Jd = 0.05, the production peaks at time t = 78 but the TKE
does not peak until t = 130 when a second peak in production occurs. Similarly, in the case
of Jd = 0.25, the production peaks at time t = 136 and the TKE peaks later at t = 178.
In the cases with KH billows, Jd = 0.05, 0.15 and 0.25, TKE continues to increase for an
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extended period after the KH billows break down. However, as the H wisps in the case of
Jd = 0.035 break down, the TKE immediately decreases. The lag between large coherent
structures and small-scale turbulence is short-lived during the evolution of H instability.

While the peak production occurs early in the case of Jd = 0.05, the dissipation rate
in Figure 12(b) peaks early in the case of Jd = 0.35. The peak dissipation rate occurs
immediately after the peak production in this case. Among the cases, the case of Jd = 0.05
has the largest peak in the dissipation. Similar to the production, the peak values decrease
as Jd increases. The peak dissipation in the case of Jd = 0.35 is only 18% of the peak value
seen in the case of Jd = 0.05. A similar trend is found in the integrated buoyancy flux and
the integrated transport, shown in Figure 12(c) and 12(d), respectively. In the study of Pham
et al. [19], the total wave energy transport over the entire evolution of the shear layer can be
as large as 33% of the integrated dissipation. The wave energy flux in the present study is
significantly weaker. As shown in Figure 6(b), the wave energy flux 〈p′w′〉 across the depth
z = −5 integrated over the simulation is only 17% of the integrated dissipation in the case
of Jd = 0.05.

7. Conclusions

We have performed LESs to investigate the evolution of an asymmetric turbulent shear
layer. Unlike previous studies, the density in the present study is continuously stratified
throughout and beyond the shear layer. Furthermore, the stratification profiles used here are
asymmetric with the upper and lower halves of the shear layer having different values for
the density gradient. We fix the stratification in the upper half and vary Jd in four cases.

We extend the previous DNS and LSA of Carpenter et al. [14,15] on the evolution of
asymmetric H shear instabilities. We find that varying the stratification in the lower half of
the shear layer over a small range of values leads to qualitative differences in the initial shear
instability as well as the ensuing turbulence. This sensitivity to the level of stratification is
the main conclusion of the present work.

Shear instability progressively changes from a pure KH mode, passing through a mixed
mode, to a pure H mode with increasing Jd. Although the present background profiles
are different from the eccentric shear/stratification profiles of Carpenter et al. [15], both
studies have initial asymmetry in the profile of gradient Richardson number, Rig(z). It is
the increasing asymmetry in Rig(z) that leads to a similar progression of instabilities in the
present work and that of Carpenter et al. [15]. In the symmetric case where the stratification
is the same throughout the shear layer, Jd = 0.05, a stationary KH shear instability develops
at the centre of the shear layer and the central isopycnal rolls up. In the asymmetric case
with largest stratification, Jd = 0.35, an H shear instability grows with the instability level
in the upper half of the shear layer. The H instability has a negative phase speed and a
wavelength shorter than that of the KH shear instability. In the asymmetric cases of Jd =
0.15 and 0.25, a propagating shear instability is observed in the upper half of the shear layer.
The shear instability has mixed characteristics: negative phase speed as in the H regime
and overturned isopycnals similar to the KH mode in the upper half of the shear layer. As
Jd increases, the phase speed also increases and the instability level, where the instability
initially grows, is displaced further above the centre of the shear layer. The nonlinear
evolution of the KH instability involves the formation of KH billows, secondary density
overturns and turbulence, while the evolution of the H instability shows the formation of
density wisps and turbulence. Neither the fundamental KH nor H shear instability excites
internal waves in the present study, although bursts of internal waves having a longer
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wavelength associated with nonlinear evolution of other discrete instability modes are seen
in regions below the shear layer.

Due to asymmetry in the initial density profile, the evolution of the mean profiles and
turbulent kinetic budgets is also asymmetric. As Jd increases, the growth of the momentum
thickness is significantly reduced as well as the extraction of the MKE. Fluctuations draw
energy from the background shear reservoir, mostly in the upper half of the shear layer
with weaker stratification. Surprisingly, during the period when the integrated turbulent
dissipation is large, the case of Jd = 0.25 shows the largest turbulent dissipation in the
lower, strongly stratified half of the shear layer. The reason is that the asymmetric stirring,
stronger in the upper half of the sheared region, is responsible for the lower half having a
relatively larger shear and a relatively smaller value of Rig that is marginally stable with
a value of 0.35. Secondary density overturns in this region lead to enhanced small-scale
turbulence and dissipation.

The present study extends the previous DNS study of Carpenter et al. [14] on asym-
metric H shear instability. Similar to their results, we found that the evolution of the shear
instabilities and the resulting turbulence depends strongly on the degree of asymmetry in the
shear layer. Carpenter et al. [14] create the asymmetry by displacing the density interface
between two layers of constant density away from the centre of the shear layer. In contrast,
the asymmetry in the present study is due to differences in the density gradient between the
top and bottom halves of the shear layer. This type of asymmetry has direct applications
into many geophysical flows such as the EUC. In the EUC, the stratification in the sheared
region near the surface mixed layer is typically weaker than the stratification in the sheared
undercurrent. Results from the present study suggest that there is a wide range of shear
instabilities, i.e. asymmetric H shear instability, that can develop in the EUC besides the
traditional KH shear instability.
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