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Large Eddy Simulations
of a Stratified Shear Layer

The performance of the large eddy simulation (LES) approach in predicting the evolution
of a shear layer in the presence of stratification is evaluated. The LES uses a dynamic
procedure to compute subgrid model coefficients based on filtered velocity and density
fields. Two simulations at different Reynolds numbers are simulated on the same compu-
tational grid. The fine LES simulated at a low Reynolds number produces excellent
agreement with direct numerical simulations (DNS): the linear evolution of momentum
thickness and bulk Richardson number followed by an asymptotic approach to constant
values is correctly represented and the evolution of the integrated turbulent kinetic
energy budget is well captured. The model coefficients computed from the velocity and
the density fields are similar and have a value in range of 0.01 — 0.02. The coarse LES
simulated at a higher Reynolds number Re =50,000 shows acceptable results in terms of
the bulk characteristics of the shear layer, such as momentum thickness and bulk
Richardson number. Analysis of the turbulent budgets shows that, while the subgrid
stress is able to remove sufficient energy from the resolved velocity fields, the subgrid
scalar flux and thereby the subgrid scalar dissipation are underestimated by the model.

[DOLI: 10.1115/1.4026416]

1 Introduction

Stratified turbulence plays a crucial role in numerous environ-
mental applications because it dictates the rate at which the energy
is transferred from large scales to the small scales, where the energy
is ultimately dissipated by molecular viscosity. Stratified turbulence
can be generated by many processes, and the parallel shear flow
between two streams having different velocity and density is a con-
dition typically observed in the ocean and the atmosphere. In favor-
able conditions, a stratified shear layer develops Kevin—Helmholtz
(KH) shear instabilities and forms large-scale billows, which subse-
quently break down into turbulence and mix the streams. Although
there is a large volume of experimental and numerical work on the
physics of stratified turbulence, the present systematic LES investi-
gation of the canonical stratified free-shear layer will be a useful
addition. It provides an assessment of the LES approach to model-
ing of stratified shear flows.

Laboratory experiments and DNS of a stratified shear layer
have been performed in several previous studies [1-5]. The high-
est Reynolds number of DNS studies of the stratified shear layer is
on the order of 5000 [6,7]. Here, the Reynolds number is defined
as the ratio of AUJ, /v, where AU is the velocity difference
across the shear layer, d,, is the half-thickness, and v is molecular
viscosity. For practical applications, it is necessary to simulate
stratified shear layers at much higher Reynolds number and the
use of LES shows great potential. In a DNS, the flow fields are
resolved down to the diffusive scales so that all scales of turbu-
lence are computed. In an LES, only the large eddies are resolved,
leaving the small scales parameterized by subgrid fluxes so that
the computational cost is significantly reduced. LES models of
stratified turbulence have been tested and improved in applica-
tions such as turbulence generated by stratified homogeneous
shear, turbulent flows in a stratified channel. Notably, LES has
been extensively used in the exploration of stratified atmospheric
boundary layer [8,9], and the use of LES in oceanic applications
is increasing [10]. LES models of the canonical shear layer have
also been evaluated [11] but without stratification. In the present
study, we assess the ability of LES with a dynamic eddy viscosity/
diffusivity model to capture buoyancy effects on the evolution of
a stratified shear layer.
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A stably stratified shear layer shows a qualitatively different
evolution with respect to the neutrally stratified case. In the neu-
tral case, the thickness of the shear layer grows linearly at a con-
stant rate in the self-similar stage [12,13]. However, due to
buoyancy, a stratified shear layer exhibits a reduction in growth
rate after the initial linear growth. At late time, the turbulence
decays and the thickness of the shear layer approaches an asymp-
totic value. Similarly, the bulk Richardson number, which is a
measure of shear instability and often used in parameterizing
buoyancy effects in applications, also asymptotes to a constant
value at late time. In the budget of turbulent kinetic energy
(TKE), the reduced production of TKE and the additional buoy-
ancy flux term cause the energy balance to vary at different times
throughout the evolution of the shear layer [1,2,4,5,14,15]. These
are important dynamical features, and the ability of LES models
to capture these physics needs to be investigated.

In the following sections, LES results of a stratified shear layer
at two different Reynolds numbers, 5000 and 50, 000, will be ana-
lyzed to evaluate model performance. Both simulations are per-
formed on the same computational grid using the same dynamic
subgrid model, as discussed in Sec. 2. In Sec. 3, the low Re simu-
lation is compared with results from the DNS database of Ref. [7]
at Re = 5000. The differences between the two LES simulations
are contrasted in Sec. 4 to examine how the model performance
changes as the separation between the filter scale and the dissipa-
tive scale increases. The discussion on the assessment of the LES
model concludes in Sec. 5.

2 Model Formulation

2.1 A Stratified Shear Layer. Following the DNS of Ref. [7],
we consider two parallel streams of different density flowing in
opposite directions. The expressions for the streamwise velocity
and the density of such flow are given by

o AU* z
(W) (z") = > tanh (0‘55;.0)

Ap* z*
tanh | ——
p an (o.sa;‘o)

where AU* and Ap* are the velocity and density differences,
respectively. The thickness of the shear layer is d,, and computed

(p)(2") = po +
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Fig. 1 Snapshots of the density field at various times in
the DNS of a stratified shear layer [7]. Development of Kelvin—
Helmholtz billows in (a) breakdown of the billows into turbulence
in (b) and the late-time layer of decaying turbulence in (c) are im-
portant characteristics of a turbulent stratified shear layer.

by AU*/max(|d(u*)/dz*|). Here, we use the superscript * to
denote dimensional quantities, subscript O to denote initial quanti-
ties at time * = 0, and angle brackets (-) to indicate quantities
that are horizontally averaged in the streamwise (x) and spanwise
(y) directions.

Figure 1 gives snapshots of the density field, showing three dif-
ferent stages of turbulence during the evolution of a stratified
shear layer. During the first stage, the process of generation of
fluctuations begins with KH shear instability at the center of the
shear layer, where z = (0. The manifestation of the shear instability
during the initial stage is wavelike, and correspondingly, the iso-
pycnals inside the shear layer develop distinct troughs and crests
with a characteristic wavelength. The instability subsequently
develops into billows and braids shown in Fig. 1(a). The billows
amalgamate with one another to create larger vortices, mostly
through pairing but also tripling at some instances [5,15]. During
the amalgamation, the fluid in the two streams is stirred and turbu-
lence is seen inside the core of the billows as well as at the braids.
The turbulence, generated by secondary shear instabilities and
convective instability, is patchy and highly anisotropic at this
stage, significantly different from homogeneous shear turbulence.
In the second stage, the billows break down. At this time, as
shown in Fig. 1(b), turbulence in the shear layer tends to homoge-
nize the density, creating a central layer of mixed fluid that is
approximately homogeneous in the horizontal. Turbulence at the
edges of the shear layer actively entrains fluids from outside into
the shear layer. The turbulent mixing rate at the edges is higher
than inside the shear layer at this time. During the last stage,
shown in Fig. 1(c), the turbulence decays, owing to stabilizing
buoyancy effects until the shear layer becomes quiescent. Overall,
the evolution of a stratified shear layer involves multiple turbu-
lence generation processes that lead to turbulence with properties
varying at different stages of the evolution, posing significant
challenges for LES models.
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Table 1 Nondimensional flow parameters and grid resolution
used in the DNS of Ref. [7] and the present LES’s. The resolu-
tion is normalized by the initial vorticity thickness 4, 0. The ver-
tical grid spacing Az is given in the region —4.5<z<3 for the
DNS and in the region —3<z<3 for the LES. Outside this
region, the spacing is increased at a rate of 1%.

Simulation Rey Ripg Pr Ax Ay Az N, Ny, N
DNS 5000 0.1 1 0.03 0.03 0.03 1024 512 768
Fine LES 5000 0.1 1 012 0.12 003 256 128 512
Coarse LES 50,000 0.1 1 0.12 0.12 0.03 256 128 512

2.2 Governing Equations. In an LES, the equations of
motion are filtered in space and take the following nondimen-
sional form:

Mass.
i
—=0 1
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Momentum.
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Ut 9, i Ri g — ij 2
o oy v Regamoy,  worEi 5 @
Density.
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where the overbar denotes filtered quantities and g denotes gravity
acting in the vertical (z) direction. The subgrid stress 7;; and sub-
grid buoyancy flux Q; are to be parameterized by the LES model,
as will be discussed in Sec. 2.3. The dimensionality in these equa-
tions has been normalized by AU*, J,,,, and Ap*. The motion of
the flow is prescribed by three nondimensional parameters: Reyn-
olds number Reo = AU*d; ,/v*, bulk Richardson number
Ripo = g"Ap*d% o /psAU™2, and Prandtl number Pr=v"/x",
where v* and k* are molecular viscosity and diffusivity, respec-
tively. It is noted that quantities without the superscript * are non-
dimensional. Two LES cases at Reynolds numbers 5000 and
50,000 are performed. The simulation with the smaller Re is for
comparison with results from DNS of Ref. [7]. The larger Re sim-
ulation will determine the performance of LES when turbulence
becomes more vigorous. The initial bulk Richardson and Prandtl
numbers are kept the same in both simulations.

Parameters used in the present simulations are listed in Table 1.
The Reynolds and bulk Richardson numbers used in the present
study are relevant to the shear instabilities observed in equatorial
undercurrents [6] as well as in near-field river plumes [16]. The
observed Prandtl number is typically 7 for thermally stratified
water and 700 for salt-stratified water. We use Prandtl of unity in
the present study. In a previous DNS study, Ref. [6] shows that
mixing efficiency can vary with Prandtl number. Nevertheless, in
the present LES study, we focus on the performance of subgrid
fluxes when the grid cutoff is larger than the Kolmogorov scale
and, therefore, much larger than the Batchelor scale as Pr
increases. The effect of high Pr is most significant during the early
development of the KH billows, when density gradient can get
sharper than velocity gradient due to smaller diffusivity. However,
as the shear layer becomes turbulent, the subgrid viscosity and
subgrid diffusivity is comparable (in the low-Re LES) and signifi-
cantly larger (in the high-Re LES) than the molecular values. The
use of unity Prandtl number, rather than higher values as in the
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observation, would not change the LES results pertaining to turbu-
lent processes in the present study.

2.3 Subgrid Models. There are many different types of LES
models, e.g., the eddy viscosity model [17], the dynamic eddy vis-
cosity model [18], and the similarity model [19]. Reference [11]
performed simulations of a neutrally stratified mixing layer using
different subgrid models, including the aforementioned three
models, to show that the dynamic procedure at a low Reynolds
number leads to better results than the constant eddy viscosity
model, which is too dissipative during the growth of the billows
and subsequent breakdown into turbulence. A mixed model that
combines the dynamic eddy viscosity model and the similarity
model produces the best performance. However, when simulated
at a higher Reynolds number, the dynamic eddy viscosity model
shows the best performance in capturing the self-similar turbulent
statistics, and thus, it is adopted to compute the subgrid stress in
the present study. The dynamic procedure has been used success-
fully in wall-bounded oceanic flows, e.g., a shallow channel with
Langmuir turbulence [20]. An advantage of the dynamic proce-
dure in the context of environmental flows is its ability to adapt to
flow oscillation [21-23] encountered in tidal flows and flows with
surface waves or internal gravity waves. A similar dynamic proce-
dure is used to estimate the subgrid buoyancy flux within the
framework of an eddy diffusivity model. The dynamic model for
subgrid buoyancy flux has been successfully used to investigate
stratified turbulence in wall-bounded flows, e.g., a channel
[24,25], an Ekman bottom boundary layer [26], and a stratified
oscillating bottom boundary layer [27].

The subgrid stress and subgrid buoyancy flux in an eddy viscos-
ity model can be written as follows:

Ty = —2C,A°|S[S; o

02— D
0 = ~CA'[3| a—” ®)

where A is the filter width, S; = 1/2(0%;/0x; + 01/ Ox;) is the

resolved strain rate tensor, and |§| is defined as 4 /23,']'3,-]-. The sub-

grid eddy viscosity and diffusivity are given by
—2 =
Vsgs = CaA"[S] (©6)
Ko = CoA2[S] (7

respectively. In a DNS, as in Ref. [7], the grid spacing needs to
be sufficiently small to resolve scales as small as a few Kolmo-
gorov length scales. In LES models, subgrid stresses and subgrid
buoyancy flux provide the energy transfer to subfilter motion
through the so-called subgrid dissipation so that grid spacing can
be significantly coarser compared to DNS. In the fine LES at
Re = 5000, we keep the vertical grid spacing at the same value
as in Ref. [7]; however, the grid spacing in the horizontal direc-
tions is four times coarser. In the coarse LES, we increase Re to
50, 000, effectively lowering the Kolmogorov length scale, while
keeping the grid spacing as same as in the fine LES. It is of inter-
est to see if the LES model can provide sufficient subgrid
fluxes as the filter width becomes significantly larger than the
Kolmogorov scale.

Following Refs. [18] and [28], the model coefficients C; and
Cy are determined by a dynamic procedure in which a test filter is
applied to the resolved velocity and density fields. Quantities
denoted by = are double-filtered with both the test and LES filters.
The dynamic coefficient is given by

_ 1 {LyMy)
€= (MyMy;) ®
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where

Similarly, the dynamic coefficient for the subgrid buoyancy flux is

1 (LIM?
Cr=—1 ( ! 19> ©)
()
where
L, - 5’2\1 - ﬁle
0 :2/_\@ B 72/_\@
i =B 50 - K5l

The test filter is applied in physical space using an explicit three-
point trapezoidal rule. The ratio of the test-to-LES filter width,

A/A, is typically taken to be /6. The bracket (.) in Eqs. (8) and
(9) denotes an average in the homogeneous directions (horizontal
in the present problem). The averaging is used to smooth the large
pointwise variation in the coefficients. When the coefficients are
positive, implying that the model is purely dissipative, energy is
transferred from the resolved to subgrid scales. In the rare event
of the averaged C,; or Cy being negative, the coefficients are
clipped to zero to prevent numerical instability.

It is important to compare the magnitude of the filter size with
the characteristic turbulent length scales to ensure that the cut-off
filter width used in the model is sufficiently small to capture key
dynamics of the flow. Figure 2 shows the evolution of the follow-
ing scales at the center of the shear layer: Kolmogorov scale
n= (e + ssgs))lM, Ozmidov scale Lo = ((¢ + ssgs)/N3)1/2,
energy-containing scale Lgy = K3/? /(& + &), and Ellison scale
Lg = (p')/d(p)/dz. Here, K is turbulent kinetic energy and ¢ and
&sgs are the resolved and subgrid dissipations, respectively. N? is
the squared buoyancy frequency defined as —g/pyd(p)/dz. In
Fig. 2, the length scales are normalized by the horizontal grid
spacing Ax. The length scales shown in Fig. 2 are only relevant
during the period of active turbulence, 50 < ¢ < 200. Over this
period, all characteristic turbulent length scales are significantly
larger than the cut-off grid spacing in both the fine and the coarse
LES cases, except for the Kolmogorov scale. The Kolmogorov
scale is reduced as Re gets larger, while the magnitudes of other
length scales are qualitatively similar between the two LES cases.
The energy-containing scale Lgy, visually seen to be the vertical
size of the KH billows, is as large as 70 times the grid spacing.
Interestingly, Lgy is an order of magnitude larger than both the
Ozmidov scale (Lp) and the Ellison scale (Lg), showing that the
largest scales at which stirring occurs in this flow are not limited
by Lo or Lg. The Ozmidov and Ellison scales, scales at which
buoyancy is important, are at least five times larger than the grid
spacing when the flow becomes turbulent at # = 80. This confirms
that the computational grid resolves the “large” eddies.

Another indicator of LES performance is the ability of the mod-
els to sufficiently remove energy at the grid scale. Figure 3 com-
pares the energy spectra of the velocity fields £ and density fields
E, between the DNS and the two LES’s at time # = 180. All spec-
tra show smooth decay at high wavenumber end, confirming suffi-
cient removal of energy. The decay of the velocity spectrum in
the fine (low-Re) LES in Fig. 3(a) matches well with the decay in
the DNS spectrum. The velocity spectrum in the coarse (high-Re)
LES shows higher energy at high wavenumber range; however,
the rate of decay is comparable to that in the fine LES. The energy
decay rate of the density spectra in the two LES’s shown in
Fig. 3(a) is also comparable to result of the DNS, although the
energy is slightly lower at the tail end.
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Fig. 2 Evolution of length scales at center of the shear layer in the LES models: (a) Kolmo-
gorov scale n and Ozmidov scale Ly and (b) energy-containing scale Lgy and Ellison scale Lg.
Solid lines and dash lines denote the fine (low-Re) and coarse (high-Re) LES models, respec-

tively. The scales are normalized by the horizontal grid spacing Ax =0.12.
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Fig. 3 Comparison of wavenumber spectra between the DNS and the LES cases at t =180 and
z=0: (a) velocity fields and (b) density fields. The energy spectrum are plotted against the

streamwise wavenumber k.

2.4 Numerical Methods. The computational domain for the
LES is taken to be similar to Ref. [7] with L, = 30.75,
L, =15.39, and L. = 25.57. The vertical grid spacing Az in the
LES is kept equal to that in the DNS so as to resolve the initial
mean shear; however, the horizontal grid spacings (Ax and Ay)
are four times coarser, reducing the number of grid points by a
factor of 16. The numerical methods used in the present study are
similar to those in Refs. [29] and [30]. A second-order central dif-
ference in space and a third-order Runge—Kutta marching in time
are used to integrate Egs. (2) and (3). A multigrid Poisson solver
is used to compute the dynamic pressure. A sponge region is used
in the regions z < —10 and z > 10 to damp any fluctuations prop-
agating toward the upper and lower boundaries.

During the early evolution of the KH billows, sharp-density
gradients are formed at the braids and the edges of the billows. In
the LES models, due to the coarser grid, a density jump can occur
over just one grid point, causing artificial oscillations on both
sides of the jump. Since the flow dynamics in these regions is not
turbulent, the LES model cannot provide subgrid fluxes that are
sufficiently large to smooth out these oscillations. The oscillations
can be removed by using alternative numerical methods designed
specifically to capture sharp gradients, such as upwind schemes,

060913-4 / Vol. 136, JUNE 2014

flux limiters, 8-method, etc. However, these methods have well-
known drawbacks, such as high numerical dissipation. In the pres-
ent study, we use explicit filtering to remove the numerical oscil-
lations. A top hat filter is applied only to the density field at every
20 time steps and only at the nodes i that satisfy the following
criteria:

Here, i denotes the grid index, the double bars indicate the new fil-
tered value of density, and the filtering is applied in all three direc-
tions. The first criterion limits the filtering operation to
nonturbulent regions. The second criterion utilizes a sign change
of first differences to limit the filtering to nodes where there are
oscillations at grid scale. The last criterion ensures that the filter-
ing does not create a new oscillation with opposite sign change of
the first difference. It is noted that the operation does not damp
out the background density gradient, since the gradient does not
satisfy the last two limiting criterion. By using this filtering
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scheme, we are able to remove the numerical oscillations while
preserving the numerical method that we had used in the DNS.
Explicit filtering has been used previously in the numerical simu-
lations of Refs. [13] and [31].

In addition to the mean velocity and mean density profiles
described above, small-amplitude zero-mean broadband velocity
perturbations are also included in the initial conditions. The per-
turbations have the following energy spectrum:

E() = (:_0)4“" {_2(%)2}

where £ is the horizontal wave number and ko is equal to 1.7. The
amplitude of the perturbation is 1% AU. The horizontal bounda-
ries have periodic conditions, while the top and bottom boundaries
have the following conditions:

1 —1

u(zmin) = 57 u(zmax) - 7
V(Zmin) - V(Zmax) =0

ow ow

_Z (Zmin) - E (Zmax) =0
P(Zmin) = P(Zmax) = 0

0 _Op

E (me) = E (Zmax) 0

2.5 Budgets of Turbulence. In order to evaluate the perform-
ance of the LES models, it is important to characterize the roles of
the subgrid fluxes in the TKE budget. The TKE budget for the
simulated flow is described by the following equation:

dKk dT;
E:P—SJFB—E—ESgS—

dT3.sg5

7 (10)

where K =1 /2<L’4§L’4j’-> is the TKE. P is the production rate,
defined as

d(u)

z

P=—(w)

¢ is the dissipation rate, defined as

_ 2 AU
"= ey (%)

and B is the buoyancy flux, defined as
B = —Ripo(p'W')
The transport term d73/dz is defined with

1 WY 2,

The subgrid dissipation &g is defined as

/ 35;
The subgrid transport dT3 g /dz is defined with
T30 = <T§3L_‘;>

Similarly, the performance of the subgrid buoyancy flux in the
models can be seen in the budget of the density variance <ﬁ’2>,
which is computed as follows:

Journal of Fluids Engineering

ar,

i =12\ __ ., _ TP _ dTP~SgS
dt <p > - PP /CIJ dz

- Xp‘sgs dz
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where the scalar production P,, is defined as

2y L2

Py = dz

and the scalar dissipation y,, is defined as

2 (oY’
Zp = PrRep \ \ Ox;

The transport term is

o 1 9 p/2
Ty = (") - PrRe <82 >

The subgrid scalar dissipation y,, ., is defined as

op
Xp,sgs = 72<Q: 8.X,>

The subgrid transport term is defined as

Tpses = <Q/3/_’/>

3 LES Performance at Low Reynolds Number

It is typical to compare results of LES models against results
from filtered DNS, as in Ref. [11], because Egs. (1)—(3) are solved
for filtered quantities. However, we will present comparison with
unfiltered DNS in the following discussion to examine whether
the LES models can capture features observed in the DNS. Such
comparison would be stringent because even a “perfect” LES is
not expected to match with unfiltered DNS results. It is noted that
filtering the DNS only changes small-scale dynamics, such as dis-
sipation rate, but would not alter large-scale dynamics, such as
mean quantities and the evolution of shear-layer thickness or bulk
Richardson number.

3.1 Flow Evolution. Snapshots of the density fields, shown in
Fig. 4, indicate that the fine (low-Re) LES is able to capture im-
portant dynamical features during the evolution of the stratified
shear layer. At time ¢ = 80, the primary mode of KH shear insta-
bility is similar between the DNS and the fine LES. Comparing
Fig. 1(a) to Fig. 4(a), both simulations show a shear instability
having similar horizontal wavelength and similar vertical extent
of the KH billows. The secondary pairing of the billows seen in
the DNS is also present in the fine LES at x = 20 in Fig. 4(a). In
the DNS, there is an event where three vortices merge into a larger
vortex; however, this is not seen in the LES. Without the triple
pairing, the generation of turbulence in the fine LES is somewhat
weaker than in the DNS at that time. When the KH billows break
down into turbulence in the center region of the shear layer at
t = 120, patches of localized turbulence are seen at the edges of
the shear layer. The patches, caused by vortices that extend away
from the center of the shear layer, can be seen in the DNS at
x = 13 along the lower edge of the shear layer in Fig. 1(b). The
fine LES also shows these patches along both the lower and upper
edges, as in Fig. 4(b). At a later time ¢ = 180, both Figs. 1(c) and
4(c) show the decay of turbulence in the shear layer. Unlike an
unstratified shear layer, in which the turbulence approaches a self-
similar state, the turbulence in a stratified shear layer is attenuated
by buoyancy at late time. Such attenuation is an important feature
that the fine LES is able to capture.
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Fig. 4 Snapshots of the density field at various times in the
fine (low-Re) LES. Similar to results of DNS, the LES captures
the Kelvin—-Helmholtz billows, their breakdown into turbulence,
and the decay of turbulence.

We evaluate the growth of the shear layer by quantifying the
temporal evolution of the momentum thickness, which is defined

as follows:
Zu 1
op(r) = ——
o=[";

where z,, and z; are the upper and lower boundary of the computa-
tional domain, excluding the sponge. Since Jy is an integral quan-
tity, it can be used to assess if the LES can capture the overall
evolution of the mean velocity (u). Figure 5(a) shows that the
evolution of 0y is similar between the DNS and the fine LES. The
evolution consists of a period of linear growth between ¢t = 50 and
80, during which stage the KH billows form and amalgamate,

<u(z)>2} dz
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and a subsequent period of turbulent entrainment between ¢ = 80
and ¢ = 200. The thickness saturates after r = 180 at approxi-
mately four times its initial value. Relative to the DNS, the fine
LES shows a smaller value of dy during the initial growth period
70 <t < 100 and a larger value during the turbulent entrainment
period ¢ > 100. The smaller value in the LES during the early pe-
riod is due to the missing of the triple pairing, as discussed earlier.
The larger value of dy during the subsequent growth period sug-
gests an overestimate in turbulent entrainment in the fine LES.
Similar to Jy, the bulk Richardson number Ri, also saturates after
the turbulent entrainment period, as shown in Fig. 5(b). Both the
DNS and LES indicate the same value at the end of the simula-
tions, although the value fluctuates during the turbulent entrain-
ment period. It is noted that Ri, is computed using the vorticity
thickness d,,, which, unlike the momentum thickness Jy, highly
fluctuates in time. By definition, Ri, represents the bulk ratio of
potential energy to available mean kinetic energy, and its satura-
tion implies that the mean kinetic energy can no longer be
extracted for mixing. The ability to capture the evolution of Ri,
suggests the fine LES has correctly represented the bulk turbulent
mixing of momentum and density.

3.2 Budgets of Turbulence. While the bulk characteristics of
the shear layer are similar between the DNS and the fine (low-Re)
LES, the turbulent statistics exhibit some differences. Figures 6(a)
and 6(b) contrast the temporal evolution of the integrated TKE
budgets between the DNS and the fine LES, respectively. In the
figure, the terms in the TKE budget are integrated over the compu-
tational domain so that the resolved and subgrid transport terms are
zero and not plotted. The evolution shows generation of TKE due
to production at early time and decay of turbulence at later time
due to dissipation and buoyancy flux. Between the two simulations,
the DNS has a larger peak in the production, because the billows
can amalgamate into larger vortices in this case. The larger vortices
in the DNS result in a larger Reynolds stress than in the fine LES.
Similarly, the dissipation rate in the DNS is also larger than the
sum of resolved and subgrid dissipation in the LES. For example,
at t = 100, the integrated dissipation in the DNS is 30% larger than
the sum in the LES. It is noted that the dissipation rate computed
from the filtered DNS, against which the LES should be compared,
would be smaller than the values shown in Fig. 6(a). The smaller
production also can contribute to the smaller dissipation seen in the
LES. Different from the production and dissipation, the peaks in
buoyancy flux, although occurring at different times, have a similar
magnitude between the two simulations.

In an LES model, the energy at large scales is resolved while
the energy at subfilter scales is removed by subgrid dissipation.
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Fig. 5 Temporal evolution of (a) the momentum thickness 3, and (b) the bulk Richardson num-
ber Rip, is similar between the DNS and the fine (low-Re) LES
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The capability of an LES to provide sufficient subgrid dissipation
in the TKE budget is an important indicator of LES performance.
The TKE budget at time ¢ = 120 in the fine (low-Re) LES is
shown in Fig. 7(a), and it indicates that the subgrid dissipation is a
large contributor to the budget. At this time, although the produc-
tion continues to generate turbulence, the TKE in the shear layer
depletes due to a net loss. The decay of turbulence is caused by
the loss to the buoyancy flux, the resolved dissipation, and the
subgrid dissipation. The magnitudes of the transport, the buoy-
ancy flux, and the resolved and subgrid dissipations are approxi-
mately equal to one another, and their sum is larger than the
turbulent production at z = (0. While the subgrid dissipation is
comparable to the resolved dissipation in the TKE budget, a dif-
ferent trend is seen in the budget of the density variance. Shown
in Fig. 7(b), the subgrid scalar dissipation is noticeably smaller
than the resolved scalar dissipation. At the center of the shear
layer, the subgrid scalar dissipation is only 75% of the resolved
contribution.

3.3 Behavior of Model Coefficients. The subgrid coefficient
C, from the fine (low-Re) LES has a range of values between 0.01
and 0.02 in the center region of the shear layer, —3 < z < 3, as
shown in Fig. 8(a). This range of C, is typical of previous
applications to unstratified shear flows. At the edges of the shear
layer where turbulence is intermittent (but can be strong), the

Journal of Fluids Engineering

coefficient increases to larger values up to 0.03. Relative to the cen-
ter of the shear layer, the edges have weaker stratification, and
therefore, local turbulence can be stronger at times. The advantage
of using a dynamic model is that the coefficient is allowed to
dynamically adjust to local flow conditions, e.g., it is not exces-
sively dissipative during the early evolution of the KH instability
wave or during transition to turbulence, as demonstrated previously
in the LES of a plane jet [32]. However, as discussed below, the in-
ternal wave activity in the stratified background must be handled
conservatively. The coefficients in the nonturbulent region far away
from the shear layer are nonzero at time ¢t = 80. The nonzero coeffi-
cients are due to the presence of internal gravity waves. The LES
model detects the velocity fluctuations due to wave activity and
produces a nonzero model coefficient. At later times ¢t = 120 and
t = 180, the coefficients in the nonturbulent region have negative
values that are set to zero to prevent numerical instability.

Despite the spatial scatter in the value of C,, the horizontally
averaged eddy viscosity <ngs> is confined to the shear layer, as
shown in Fig. 8(b). The profiles of (v ) have a peak value near
the center and decay toward the edges of the shear layer. It is im-
portant to note that the profiles are shaped by the modulus of the
strain rate |S|, which effectively damps the effect of nonzero C, in
regions away from the shear layer. At time ¢ = 120, the eddy vis-
cosity at the center of the shear layer is approximately half of the
molecular viscosity. While the eddy viscosity is smaller, the
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subgrid dissipation is as large as the resolved dissipation, as
shown in Fig. 7(a). This is due to spatial variation in the eddy vis-
cosity. Noting that, while v is constant in space, Vg varies spa-
tially and proportionally with |S|, the spatial distribution of eddy
viscosity is skewed toward regions of large strain rate fluctuations,
giving rise to a large subgrid dissipation.

Different from C; which does not vary significantly, the model
coefficient Cy in the center shear layer fluctuates during the time
period 80 < ¢ < 180. The coefficient has values notably smaller at
early time ¢ = 80 and at late time ¢ = 180 compared to the value
at time # = 120, as shown in Fig. 9(a). At t = 120, the coefficient
has a range between 0.015 — 0.02 in the center region of the shear
layer. The coefficient also increases to larger values at the edges
of the shear layer and have nonzero values in the regions far way,
due to waves. While the spatial trend is similar between Cy and
C,, the coefficients can have significant different values at the
same depth, noting that the coefficients do not vary in horizontal
planes. For example, at time ¢ = 80, C,; at z = 0 is twice larger
than Cy. At time 7= 120 and 180, negative values of C, are
clipped to zero in regions far away from the shear layer; however,
Cy has a positive value and, therefore, is not clipped.

The profiles of horizontally averaged eddy diffusivity <ngs> are
similar to those of <ngs>3 large values at the center decaying to

060913-8 / Vol. 136, JUNE 2014

smaller values toward the edges of the shear layer, as shown in
Fig. 9(b). The eddy diffusivity is considerably smaller than the
molecular diffusivity. While the smaller (v ) relative to v gives
comparable resolved and subgrid dissipation rates (¢ and &g in
Fig. 7(a)), the smaller <ng5> relative to x has the subgrid scalar
dissipation smaller than the resolved part (y and y in Fig. 7(b)).
The temporal evolution of the eddy diffusivity also varies
differently from that of the eddy viscosity at the center of the
shear layer. At this location, the subgrid Prandtl number,
Pryos = (Vsgs)/(Kses ), has a value of 1.9, 0.9, and 1.3 at r = 80,
120, and 180, respectively.

4 LES Performance at High Reynolds Number

4.1 Flow Evolution. The coarse LES model simulated at a
higher Reynolds number is also able to capture key dynamical
features during the evolution of the stratified shear layer. Figure
10 shows snapshots of the density fields at three different stages
of the evolution. The formation of KH billows in Fig. 10(a) and
their breakdown to turbulence in Fig. 10(b) are similar to those in
the fine LES discussed in Sec. 3.1. At late time, when turbulence
decays, the shear layer is capped by the effects of stratification
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Fig. 10 Snapshots of the density field at various times in the
coarse (high-Re) LES. The development of Kelvin—-Helmholtz
billows and the evolution of turbulence are well captured.

and becomes laminar, as in Fig. 10(c). Despite the difference in
Re, the wavelength and the structure of the primary KH shear
instability are similar between the two LES cases. However, we
note the development of secondary instabilities, which only occur
in the high-Re LES. In the fine (low-Re) LES, the braids connect-
ing the billows maintain sharp density gradient until small-scale
turbulence spreads from the billows and destroys the gradient. In
the coarse (high-Re) LES, density overturns relating to secondary
shear instabilities occur locally in the braids and generate turbu-
lence there before the spread of turbulence from the billows, as
seen in Fig. 10(a). The secondary instability occurred in the
coarse LES has been seen previously in the observations. For
example, Ref. [16] reports primary KH shear instabilities in the
near field of a river plume exhibit secondary density overturns at
the braids when the Reynolds number is large.
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The bulk characteristics of the shear layer are also well cap-
tured. Figure 11(a) compares the temporal evolution of the
momentum thickness 0y between the fine (low-Re) and coarse
(high-Re) LES simulations. The initial growth rate during the de-
velopment of the KH billows is similar. The period of linear
growth ends at approximately ¢ = 100 in the fine LES, while it
extends a little longer in the coarse LES, resulting in a larger value
of dg. During the active turbulent period, 100 < ¢ < 180, Jy
increases at a faster rate in the coarse LES. Due to larger turbulent
entrainment at a higher Reynolds number, dyg grows to a larger
value at the end of the simulation. At a higher Reynolds number,
the shear layer can extract more momentum from the mean shear
and grow to a larger thickness. This result is consistent with previ-
ous DNS study [4], which shows that the final Ri, increases with
increasing initial Re. Despite the difference in the final value, the
coarse LES also captures the late-time buoyancy-induced satura-
tion in the thickness. The evolution of the bulk Richardson num-
ber Ri, in the coarse LES, shown in Fig. 11(b), is similar to that in
the fine LES, except during the period 150 < ¢ < 200. In both
cases, Ri, saturates at the same value at late time.

4.2 Budgets of Turbulence. The TKE budget at time t = 120
in the coarse (high-Re) LES is shown in Fig. 12(a). The turbulent
production reaches a slightly larger value at this time compared to
the fine LES. Furthermore, the production integrated over the do-
main has a higher peak value in the coarse LES (not shown), indi-
cating the shear layer in the high-Re simulation generates more
TKE. Different from the fine LES, the subgrid dissipation is sig-
nificantly larger than the resolved dissipation, although the total
dissipation is approximately equal between the two LES simula-
tions at this time. At the center of the shear layer, the subgrid dis-
sipation is approximately ten times larger than the resolved value.
With increasing Re, the subgrid stress contributes more to the
TKE budget, making up for the smaller resolved dissipation. It is
interesting to note that the dissipation rate provided by the LES
model in the coarse (high-Re) simulation matches well with val-
ues reported in observations. The KH shear instability in the river
plume reported in Ref. [16] with Re ~ 5 x 10°, Ri, ~ 0.2 — 0.25,
and Pr ~ 700 has a dissipation rate in the core of the billows in
range of 1 — 3 x 10~#(m?s~3). Figure 12(a) shows the dissipation
rate equal to 4.3 x 107*(m?s™3) at the center of the shear layer
using AU = 1ms~! and §,, = 1 m, which are the scales observed
in Ref. [16].

Similar to the TKE budget, the budget of density variance at
time ¢ = 120 shown in Fig. 12(b) also has the subgrid scalar dissi-
pation significantly larger than the resolved contribution. While
the ratio of the subgrid dissipation to the resolved dissipation in
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Fig. 13 (a) Difference in the eddy viscosity and eddy diffusivity at z= 0 between the fine (low-
Re) and coarse (high-Re) LES cases and (b) evolution of squared shear rate S?> and squared

buoyancy frequency N? at the same location

the TKE budget in the coarse (high-Re) LES is 10:1, the ratio is
only 7:1 in the budget of density variance. The difference suggests
the subgrid stress and the subgrid scalar flux operate differently in
the LES model. Furthermore, while the total dissipation of TKE is
approximately equal between the two LES cases, the total scalar
dissipation is smaller in the coarse simulation.

4.3 Behavior of Model Coefficients. The model coefficient
C, in the coarse (high-Re) LES has a range of values comparable
to that in the fine (low-Re) LES. During the time period
80 < r < 180, C, falls in the range of 0.01 — 0.02 in the central
region and has a larger value, up to 0.3, at the edges of the shear
layer. The model also produces nonzero values of Cy, as well as
Cy, due to effect of the internal gravity waves, in regions far away
from the shear layer as in the fine LES. The value of C; in the cen-
tral region of the shear layer does not vary significantly between
the two simulations. With a tenfold increase in Re, the value of C;
remains within the same range, suggesting that the subgrid viscos-
ity depends mainly on the local strain rate |S|.

Figure 13(a) compares the horizontally averaged eddy viscosity
and eddy diffusivity at z = 0 between the two LES cases. Overall,

060913-10 / Vol. 136, JUNE 2014

the eddy viscosity is larger in the high-Re number simulation at
all time. The larger eddy viscosity results in a larger subgrid
dissipation in the TKE budget shown in Fig. 12(a). The difference
between the two LES cases is largest during the development of
the KH billows at time # < 80 when the shear layer is not yet fully
turbulent. The shear rate, and consequently |S|, is smaller in the
fine LES during this period. The reason is that, in the fine LES at
low Re, the larger molecular mixing of momentum causes || to
decrease at a faster rate. A similar effect is seen in the eddy diffu-
sivity during the same time period. During the period of decaying
turbulence, ¢ > 120, the difference in eddy diffusivity between the
two LES cases is notably larger than the difference in eddy viscos-
ity. However, the subgrid dissipation increases faster than the sub-
grid scalar dissipation when comparing Fig. 7 to Fig. 12.

Despite differences in the eddy viscosity and eddy diffusivity,
the evolution of the mean quantities at the center of the shear
layer, such as the squared shear rate S> and squared buoyancy fre-
quency N2, is similar between the two LES cases, as shown in
Fig. 13(b). During the early stage, 0 < ¢ < 80, when the KH bil-
lows develop, both N> and S? are rapidly reduced. The billows
reduce the momentum and the density differences between the
two streams. During the decay stage, ¢ > 120, S? and N? remain
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relatively constant with the value in the coarse LES slightly
smaller. The smaller N?> and S? during this period are due to
higher rate of mixing achieved at a higher Reynolds number. Dur-
ing the time period 80 < ¢ < 120, the center of the shear layer
shows an increase in N2, while S remains relatively at the same
value in both LES’s. The increase in stratification in the center of
the shear layer during this period is due to stronger mixing at the
edges of the shear layer. During this period, turbulence at the
edges actively entrains fluids of different density from the exterior
into the shear layer so that the density difference across the center
of shear layer gets larger, resulting in higher values of N2

5 Conclusions

In the present study, we have performed an assessment of the
LES approach in the canonical case of a stratified shear layer. A
dynamic procedure is used to compute model coefficients based
on a test filter. The same dynamic procedure is applied to both the
velocity field and the density field to yield two corresponding
model coefficients, C; and Cy, which are used to compute the sub-
grid stress and the subgrid buoyancy flux, respectively. Two LES
cases at different Reynolds numbers are performed on the same
computational grid to evaluate the performance of the LES in
high-Re applications.

The fine LES with Re = 5000, when compared with the DNS
results at the same Re [7], shows excellent agreement. The evolu-
tion of the shear instability, including the growth of KH shear
instability, the formation, pairing and breakdown of KH billows,
and the decay of stratified turbulence, is well captured in the fine
LES. The bulk characteristics of the shear layer, such as the tem-
poral evolution of the momentum thickness, the bulk Richardson
number, and the integrated TKE budget, agrees with the DNS
results. In the TKE budget, at the times when the shear layer is
turbulent, the subgrid dissipation has the same magnitude as the
resolved dissipation. At the same time, the budget of the density
variance shows that the subgrid scalar dissipation is significantly
smaller than the resolved dissipation. The LES model yields the
coefficients Cy and Cy in the same range of 0.01 — 0.02 in the
shear layer. The horizontally averaged eddy viscosity and eddy
diffusivity are smaller than the corresponding molecular values
over the duration of the simulation.

The coarse LES at Re = 50, 000 also yields acceptable results in
term of the bulk characteristics of the shear layer. The evolution of
the KH shear instability and the generation of turbulence in the
shear layer are captured in the model. The momentum thickness is
approximately 10% larger than the value seen in the low-Re LES at
late time, consistent with previous DNS study of the effect of initial
Re [4]. The bulk Richardson number also asymptotes at late time at
a value similar to that in the low-Re case. The TKE budget during
the turbulent stage has subgrid dissipation significantly larger than
the resolved dissipation, and the same trend is observed in the
budget of the density variance. However, the ratio of the subgrid
contribution to the resolved contribution is larger in the TKE
budget, indicating the subgrid buoyancy flux does not increase as
much as the subgrid stress as Reynolds number increases. At a
higher Re, the subgrid dissipation increases as the horizontally
averaged eddy viscosity increases. In contrast, while the eddy diffu-
sivity also increases at higher Re, the subgrid scalar dissipation
does not significantly increase. This suggests that, as Re increases,
the density gradient at the grid scale does not align with the velocity
gradient, which the LES model uses to compute eddy diffusivity.
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