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A subgrid model for nonlinear functions of a scalar
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In applications of large eddy simulation of turbulent flows, subgrid models are often required for
closure of strongly nonlinear functions of a scalar. The Arrhenius dependence of the reaction rate on
temperatureT, the T* dependence of radiation heat transfer, as well as the species mass fractions
and temperature dependence on the mixture fraction in solutions of the strained laminar flamelet
model are among some of the problems of interest. A moment-based reconstruction methodology is
proposed here in which the scalar field is estimated by an approximate deconvolution operation but,
unlike the usual deconvolution operation with given coefficients, the coefficients in the expansion
are obtained by requiring that the statistical filtered moments of the scalar field up to a certain order
are matched. The estimated scalar field is then used as a surrogate for the exact scalar field to
directly calculate the subgrid contribution. Tests of the proposed approach are performed by using
our direct numerical simulation database of scalar transport in a turbulent shear layer using two filter
sizes: 12 points and 6 points per vorticity thickness. It is found that a simple moment-based model
with one coefficient performs well for polynomial nonlinearities. The performance of the model in
the case of an exponential Arrhenius-type nonlinearity is generally good and can be very good
depending on the stoichiometric mixture fraction and the filter size. 2001 American Institute of
Physics. [DOI: 10.1063/1.1410385

I. INTRODUCTION nonlinearity e "a/T, where the temperature is assumed to
have a specified dependend€Z), on the scalar and,, a

strongly nonlinear functions of a scalar variablEor ex- specified constant, is the activation temperature. Direct nu-

ample, the reaction rate exhibits an exponential dependendBerical simulation(DNS) of passive scalar mixing in a tur-
on the temperature; laminar flamelet theiry nonpremixed bulent shear layer is used for_ thés priori _eva_luatlon. It
combustion results in a nonlinear dependence of specied1ould be noted that the subgrid contribution in the case of
mass fractions and temperature on a conserved scalar wifli- 1 1 Zero; therefore, interestingly, the assumption of infi-
the strain rate as a parameter; and, the energy loss rate fBitely fast chemistry that leads to piecewise linear depen-
radiation heat transfer in the optically thin regime dependglénce of the temperature and species on the mixture fraction
on the fourth power of the temperature. Filtering of suchalso results in considerable simplification in LES away from
nonlinear terms in the governing equations that is performede discontinuities in slope.

as part of large eddy simulatighES) approach to turbulent Approaches to modeling combustion in the LES context
combustion results in subgrid contributions that must bdnclude the linear-eddy modeand methods based on prob-
modeled for closure of the LES approach. Thus, the commogbility density functions(PDF). In turbulent combustion
underlying problem is that, given a nonlinear functitgz) ~ application$® using the linear-eddy model, subgrid mixing

The theoretical modeling of combustion often involves

of a scalarz, what is the subgrid contribution, is assumed to occur in lines following simple prescribed
- — rules. The PDF approach has become popular in connection
f(2)sg=1(2)—1(2), D with modeling the subgrid contribution to scalar functions. In

to its filtered value. In Eq(1), filtering is represented by the that approach, the so-called filtered PL#so called subgrid
overbar. Depending on the combustion model, the scalar iRDP is introduced to represent the stochastic variation of the
question may be a conserved scalar such as mixture fractigs¢alar,Z, from its filtered value; a specific form is assumed
or a nonconserved scalar such as species mass fraction. W the subgrid PDF in the presumed PDF approach or, alter-
shall think ofZ as being a mixture fraction, having a value of natively, a PDF transport equation is solved; and, thereby, the
zero in the oxidizer feed stream and unity in the fuel feedvarious filtered quantities that depend on the scalar are com-
stream. puted. The popular beta PDF which has been tested in pre-
In the present paper, we propose a model for the subgrigious Etudie@7 depends on two parameters, the filtered
contribution, f(Z)s4, and evaluate its performance for the mean,Z, and the filtered varianc&?, and is employed to
function Z", n=2-8, as well as the Arrhenius reaction rate describe the statistical variation of the scalar value in a grid
cell (more generally, the compact region associated with the

dAuthor to whom correspondence should be addressed. Electronic maiflltering operation around its ?XpeCted vaIu?, in the pre-
ssarkar@ucsd.edu sumed PDF approach. The filtered mean is explicitly avail-
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able in an LES application while the filtered variance needdVe define 7/(Z,m) as the linear operation of filtering the

to be modeled. The scale similarity approautith the coef- field, Z, successivelym times, such thatz = Fz1), Z
ficient calculated using an assumed scalar spectramj a =F(Z,2) and so on. The resolved grid spacingAis- £/N
gradient model with the coefficient calculated with a dy-and A/A is a parameter that determines the relative filter
namic procedurehave been used for obtaining the filtered size. We note that, in an actual LES, the transfer function
variance.A priori tests of the beta PDF for subgrid scalar must be modified from Eq(6) to account for the filtering
fluctuations for reactive scalars have been performed in prémplicit in the numerical method and grid resolution. The
vious studies using DNS data: Isotropic turbulence with in-consequences of such a modification are discussed in the
finitely fast chemistry as well as with the strained laminar Appendix. However, for the formal development of the pro-
flamelet model” in a nonpremixed shear layer with infi- posed model, it is sufficient to consider the filter transfer
nitely fast chemistry in a plane reacting jet using two- fynction. G.

dimensional DNS? and in a round reacting jét. The latter '

two studies used a one-step, irreversible, finite-rate mechax. Nonlinear function

nism. An overall conclusion of tha priori tests is that the ) ) ) ) L )

beta PDF model gives reasonable predictions of scalar mo- CIVen an arbitrary nonlinear functidi(z), it is possible
ments if theexactsubgrid scalar variance, obtained from the 1O Perform a Taylor series expansion around a paitsuch
DNS, is used. Applications of the beta PDF model to per—that

forming LES of specific turbulent reacting flows are fewer, (Zo)
for example, the reacting jet simulattdrihat is based on the H(Z2)=1(Zo) +1"(Z0)(Z=Z0) + — (Z—Zp)%+---.
Lagrangian flamelet concept. @)

The model proposed here for the subgrid-sd@&9 _
moments avoids the intermediate step of modeling the PDFiltering Eq.(7) and substitutingZ,=Z gives
of the subgrid-scale fluctuation and, as described in Sec. llI, =
is based directly on knowphysical-spacequantities. Fur- f(—z)_f(z):f(_z)(?_zsz. ®)
thermore, the scalar variance which is required in the PDF 2
approach can also be obtained as a special case of the pro-

4 model It is clear that if a good procedure to calculate lower-
posed model.

order nonlinearities, for examplg?, is available then it may

be possible to obtain a good representation of the left-hand-

side(l.h.s) of Eq. (8). The objective then is to obtain a SGS

model in which the parameters are chosen appropriately so
Consider a functiorZ(x) represented on a discrete grid as to obtain a good representation of lower-order nonlineari-

consisting ofN points that spans a three-dimensional cubicatties. We begin by studying how the average contribution of

domain of lengthZ. A Fourier transform pair is defined in  Z? might be obtained.

the usual manner

II. PRELIMINARIES

B. Reconstruction

209= (ZT)sf—oce Z0o0dx, 2 It is possible to reconstruct some properties of the origi-
nal field from its filtered values given the explicit form of the
P e filter. The approximate deconvolution methtdand the in-
Z(x)= f_me Z(xk)dx, @ verse modeling methd@are two examples. If we represent

] ) ) ] G as the nonzero filtering operator, then, followiign op-
wherek is the three-dimensional wave number ant the o ational form

spatial coordinate. In the present discussion only the top-hat

filter is considered. Although the subsequent analysis can be _ if— 1 i

extended to other kinds of filters, the compactness properties = G~ 1—-(1-G)

of the top-hat filter in physical space and its simplicity make L

it a good choice. Given a functiof(x), the filtered field is =Z+(Z-2)+(Z2-2Z+2Z)+--. (9)

obtained from This procedure is correctly posed onlyGf is nonzero, and

— 1 (A2 Eqg. (9) does not apply to wave numbers whede=0. The
Z(X):EJ_A /22(x+r)dr, (4) inverse filtering operation cannot reconstruct all the high
: wave number information that has been removed by the fil-
yvhe_reAf is the filter size and its transform in Fourier SPacetering operation but provides one possible “approximation”
is given by of the exact field useful for obtaining required subgrid mod-
els. Previous studiéd!® have shown that such a reconstruc-

2(1) =G, A Z(x0), ) tion procedure works well for the subgrid Reynolds stress.
where the transfer function is Let Z* be a truncation of the series in the right-hand-side
i—3 (A 12) (r.h.s) of Eq. (9). OnceZ* is calculated, the nonlinear func-
- Sin(k;As : i ; * .
G(K,Af)=_]_[ i (6) tion f(Z) is approximated by(Z*). Any further operation is

i1 (kA¢/2) performed using (Z*) instead off(Z).
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the calculation off(Z), so that the model for the required
subgrid contribution becomes

0.008 . ' e Exact Ill. PROPOSED APPROACH TO SGS MODELING
=-» 2 terms The proposed modeling approach consists of assuming a
! ! | +--+ 3 terms functional form for the dependence of the estimated scalar,

0,006 | ‘ i|#— 4 terms Zy, on the multiple filtered fieldsF(Z,m). This estimated
: scalar is then used as a surrogate for the exact scalar field in

0.004 -
f(2)—1(2)=1(Zw) —1(Zn). (10
Equation(10) satisfies the following consistency proper-

ties. First, for a linear functionf(Z)=azZ+b, Eq. (10) is

, exact for any approximatiod,, to the exact scalar field.

E Second, the proposed model, the r.h.s. of Ed), trans-
! forms in the same way as the I.h.s. under a linear mapping of

0.000 & o5 o0 Y A the scalar. For example, the exact subgrid variance is invari-

0.002

X/8, ant under a translation, i.e.; change of the reference value by
Zo,
f(Z+Z0)sq=(Z+Z0)2—(Z+Zp)?=1(Z) g (11)
. +—e Exact L
! .x 2 terms The approximation proposed here fdg,, see Eq.(52),
; o 3terms transforms tazy, +Z, under a translation, obeying the same
+— 4 terms transformation rule as the exact scalar fieldit then follows

E <« 5 terms that the ;ubgrid yariapce calculated using .the surrogate sca-
----- REEEEEEEEED lar, Z,, is also invariant under a translation. The subgrid

0.010 [---------
contribution forZ? is very important because it is the leading
order term in a Taylor series expansion of an arbitrary func-
tion as shown by Eq@8). During the course of this study, it
was found that an alternative modél,Zz)=1f(Z,,), which
did not satisfy the aforementioned invariance property of the
subgrid variance leads to a deterioration in the pointwise
behavior.

®) The estimated scalar field,,, depends on unknown

! coefficients that must be determined. In order to obtain these

: : : unknown coefficients, a set of constraints is imposed on the
x/3, : g
model. Finally, the set of equations is solved by any means

FIG. 1. Profiles of the subgrid scalar variangaZy: (a) A/A=4, (b) available; in the present case, by assuming a theore_tical tur-

A;/A=8. Results with truncations of different order in the approximate bmence spectrum that permits closure of the constraint equa-

deconvolution method are compared with the exact profile. tions.

Consider a modelM, that depends on the filtered fields

{ZZ, ... .F(Z,m)}, namely

A priori tests have been performed using our DNS data- 7, (x)=M({cq,C1,....Ca}.{Z.Z, .. . . F(Z,M)}). (12
base of the temporal mixing layer to study the behavior of

this approximate deconvolution procedure. The DNS datal Ne model coefficientsi o, Cy.... Cn}, are chosen in such a

base is described in Sec. VI. The temporal mixing layer ig¥@Y that a predefined cost function is optimal. Each cost
homogeneous in the, and x, directions and the statistics 'Unction generates a family of model parameters that, in
(denoted by(-) and obtained by, — x; plane averaggvary principle, depends on filter size and the local condmons of
in the x, direction. Profiles of the expected valls(ezzsg>, of the ﬂOW' A member of the fa_1m|Iy of md?[?rels, EQL2), is an

the subgrid contribution t&?, as a function of the cross- extension of the deconvolution procedtrre

stream coordingte normalized by the vortic_:ity thickness, Zu -7+ co(f— 7)+ Cl(Z— 22=+3 . (13)

are shown in Fig. 1. The effect of increasing the number of o

terms in the expansion, E¢P), is shown for the filter widths Where the coefficientsico,cy,....cn}, are allowed to vary
A¢/A=4 and 8. As can be seen, even with five terms, reinstead of being fixed to be unity. In the present work we will
quiring the calculation ofF(Z,5), we can only recover 88% consi.der.only this model due to its simplicity. Its transfer
of the peak contribution in the first case and 73% in the cas&nction is

with A;/A=8. Although the tendency is in the right direc- iM . A

tion, the number of terms required, even for a simple nonlin-  —=M(c, .G,G?, ...), (14

ear function such a&2, becomes prohibitive. Therefore, we

introduce an alternative approach as described below. where the hat denotes the Fourier transform.

Uy

0.005 [-------- e R

0.000
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IV. MOMENT-BASED SUBGRID MODELING ®
o00= |~ e gak 21
In order to obtain a set of equations that permits the —

Ealculatlck;n OL the cerff|C|entx:], ' COTQ'tI'OnSh or conr?tralnts bwherefﬁ(k) is the Fourier transform ap(x), it is possible to

ave to be chosen. Among the multiple choices that can %rite the first term on the Lh.s. in E€R0) as

made, the simplest one is to make the statistical mean filtere

moments that appear in the Taylor series expansions of the = B © ke

modeled field equal to the corresponding filtered moments of QZ dx= Qd)(X)dX— a ,we p(k)dkax. (22

the exact field. This condition is expressed in mathematical

form by Exchanging integrals and taking into account the relation
. — 1 ©
fQZZ—Zde= fﬂz'ﬁ,,—iﬁﬂdx, o(k)= (zw)gﬁxe'k'xdx, (23
. — for a three-dimensional spac@, it follows that
f z3—z3dx:f z3 —Z3,dx,
Q — ~
(15 L)Zde=(277)3¢(0). (24)

o _ The same simplification is applied to_the first term in the
fQZ”—Z”dX= fﬂ m— Zwdx, rh.s. of Eq. (20). Defining ¢(x)=Z%(x) and iy (X)

=Zﬁ,|(x) and applying the same procedure to the second
where() is the appropriate domain for calculating the aver-term in the I.h.s. and r.h.s. of E€R0), we get the equivalent
age. The required number of equations of this form is chosegt Eq. (20) in spectral space
equal to the number of unknown coefficients. Another possi-

bility is to consider a cost function of the form $(0)— ¢(0) =y (0) — P (0). (29
— = — The Fourier transform o(x) =?(x) can be expressed as a
_ 7 _ 52
I(c)= JQ((ZZ_ZZ)_(ZM_ZM))ZdX' (16 function of that ofZ(x) using Parseval’s convolution inte-

grals
from which the values of the coefficients are calculated by a

standard minimization procedure. In a more complex model, 75 v _ & J’”’ S (k)2 ( = 1) d 26
a combination of both methods can be used. PR=GK) | 2(10)Z(se= 1eo)drcy. 26
A. One-parameter model Setting k=0 and taking into account that}_(—xo)

=2*({<0) andé(O)zl gives:ﬁ(O), and asimilar procedure
gives ¢, (0). Theresulting expressions are

Zu=7+¢o(Z-2). 1 -
M CO( ) ( 7) ¢(0): f

where the tilde represents a test filter with cut-off wave num-
ber, x;, that, in general could be different from the principal .
filter cutoff wavenumber; . As discussed in the Appendix, (}’M(O):f Z (ko) Z2, (ko) iy (28)
there are situations where a test filter, different from the main o

filter, may be useful. The Appendix discusses the model per- . =
formance when the test and main filters are not identicaIThe Foungr transform o:f;(x)—Z_ (x) can also' be expres_sed
Henceforth, in the main body of the paper, we will assume2S 2 function of that ofZ(x) using Parseval’'s convolution
that the test filter is the same as the main filter so that théntegrals

model becomes A
W)= f

Consider now the simple one-parameter model

 Ze) 7 (o), @27

G Z(0) G~ ) Z(se= my) iy, (29

Zy=Z+co(Z-2), (18)
whose transfer function is and setting againk=0 and taking into account that
~ A - Z(— rp)=Z* (ry) givesy(0), and asimilar procedure gives
M1=G(1+Co(1-G)). (19 I;}ll(\A(O)o.) Ther(es(glt?ng efp(re)ssions are P ’
The equation forc, is obtained by requiring that the A . A A .
exact and model fields have averaged filtered moments of ‘/’(O):f G(ko)G* (Kg)Z(rp) Z* (1e5)d kg, (30
order 2 that are equal -

fQ?—?dF Lﬁ—fﬁﬂdx- (20) In(0)= f :Cé(ko)é*(ko)im("o)ifn('fo)dko- (31)

Defining ¢(X)=Z2(X) and ¢y (x)=2%(x), and using the Introducing Zy () =Z(k)M1(Co,x), Where M, is defined
inverse Fourier transform formula by Eq.(19), the following form of Eq.(25) is obtained:
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| 202 (e [1- R oW (.10

X[1—G(ko)G* (o) ]dro=0. (32
Substituting the expression, Ed.9), for |\7I1(CO,KO), we get
0=ay+Coa, +cay, (33

where

0= | a6 ()~ 1]

X [1-G(Kg)G* (ko) ]dxco, (34)

a;= fo;Ez(Ko)é(Ko)é*(Ko)[z_é("o)_é*("o)]

X [1-G(Kg)G* (ko) ]dco, (35)

A= fZEz(Ko)é(Ko)é*(Ko)[l_é("o)]

X[1—G* (1) [ 1~ G(Ko) G* (ko) ]dKo, (36)

with EZ(K)zi(K)i*(K).If the spectrum of the scalar and 0.04
the characteristics of the filter are known, it is possible to

solve the quadratic, Eq33), for cy. Thus, the coefficient

depends on both the filter characteristics and, through the
scalar spectrum, on the state of the turbulent field. This co-

efficient can be tabulated priori for a given filter making

the calculation in a LES code straightforward, provided that
a good approximation of the scalar spectrum is known. The 0.00

low wave number part of the spectrum whefg(x) in-

creases with increasirlgis problem-dependent and difficult

A subgrid model for nonlinear functions 3807

—v Exact n=2
— Model n=2
e—e Exact n=3
e—o Model n=3
=—a Exact n=4 |-
=2 Model n=4
+— Exact n=6
o—o Model n=6
+— Exact n=8
a—2 Model n=8

0.020

0.010

(@

1.0 ] ! : 1.0

0.08

v Exact n=2
= Model n=2
e—e Exact n=3

0.06 |~~~ y‘ﬁf\\%—} o—o Model n=3 |-
_ . : =—= Exact n=4

' ; =—a Model n=4

l +— Exact n=6

i o—o Model n=6

! +—a Exact n=8

! ~—a Model n=8

-1.0

to model. However, the contribution of the low wave numbergiG. 2. Exact and modezl,), from filtering Z". Model with coefficient,

part of the spectrum to Eq$34)—(36) is negligible since

obtained from Eq(37); (@) A;/A=4, (b) A;/A=8.

G(kx)—1 for k—0. Therefore, the proposed model does not
depend on the spectral shape at the low wave number end.
The influence of the assumed shape of the model spectrum in

other wave number ranges is discussed in more detail in thghere () in the temporally evolving shear layer considered

following section.

B. Calculation of ¢

here is thex;—x3 plane of homogeneity. Note that is a
function of the inhomogeneous directiot,.
It is important to notice that this is thbest possible

In a priori tests, the direct approach is to use the DNSestimate one can get for the coefficient since the fully re-

database in order to calculate the required integrals( 2y,

solved DNS database is used. Equivalently, the coefficignt

from wherec, can be calculated. This approach is reduced t¢can be obtained by solving E(B3). Figure 2 show compari-

solving the following equation foc,, where the integrals
are calculated from the DNS database:

J 72-72dx= | Z?-Z%dx
o Q

26, JQZ(Z—i)—z:(Z—Z)dx

+cgf0(2—z=)2—(z=—i)2dx, (37)

sons of the exact and model SGS contribution with coeffi-
cient calculated using Ed37) for A;/A=4 and 8 andn
=2,3,4,6, and 8. By construction, the profiles of exact and
model terms are identical fon=2. As can be seen, the
agreement is very good for the higher moments with visible
deviations apparently only fon=6 and 8. Thus, exactly
modeling(Zgg) leads to good prediction ofZJ,) as sug-
gested by the Taylor expansion, E§).

A second approach, relevant to an actual application of
the model where DNS data are unavailable, is to model the
spectrum of the scalar field from our knowledge of turbu-
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lence physics. The particular turbulent Kkinetic-energyand p=4, 8=5.2. Notice, e.g., from Eq33) that the con-

spectrum’ is considered here
E(x)=Ce?*x 553 (kL)f,(k7), (39

wherex is the magnitude of the wave number vector

L 5/3+p
f“"”:(ﬁ 39
f,y(Kn)=e’B“’. (40

with the parameterp=4 andB=5.2. The wave number is

santC,e?*L5° does not play any role in the calculation of
the coefficientcy.

Defining

y=A¢/2L, (46)

the filter transfer function, Eq6), that depends ok, 5,
and k5 is approximated by a spherical function that depends
only on x=|«

A sin(yd
G(%,y)= ln)(/g ).

(47)

normalized in the model spectrum by the large-scale Iengtltrhus, the multidimensional integrals in Eq84)—(36) are

scale

k3/2
L=—

simplified to one-dimensional forms which are calculated di-
rectly by introducing the model scalar spectrum, E4p),
and the filter transfer function, E¢47)

€

and the Kolmogorov scale ao(%,u)=f E(9,1)[G(9,7)2—1]
0

3\ 14 .

,7:(? X[1-G(9,7)2]d9, (48)
The constant€ andc, are calculated by requiring that the al(y,,u)=waEz(ﬁ,M)é(ﬂ,y)z[l—é(ﬂ,y)]
integrals of E(x) and 2v«k%E(k) be equal to the turbulent 0
kinetic energy,k, and the turbulent dissipation rate, re- - 2
spectively. The spectrum, E@38), has the classical-5/3 X[1=G(¥,)"]d¥, (49)
Kolmogorov scaling in the inertial range, ha8 scaling for o - ) - 5
low wave numbers, and exponential decay in the dissipation @2(7,x)= JO Ez(9,u)G(3,7)T1-G(9,7)]
range. A scalar with molecular Schmidt numise=1.4, is A
simulated in the DNS. Therefore, the spectrum of the scalar X[1—G(9,y)?]dV. (50)

can be related to that of the turbulent kinetic energy by re- ) ) .
placing by 7 with 7,= 7Sc 2 where 7= (1% €)* is the The calculated integrals are then inserted into B8§), the

Kolmogorov scale withs denoting the molecular viscosity, quadratic is solved, and the following expression obtained

andL=L,=k¥? ¢ is an integral scale. This permits the defi- ©OF the model coefficient:
nitipn of a turbulence Reynolds numbétet=k2/v.e, upon —ay(y,pu)* \/azi(%y)_élao( v, 0857, 12)
which the spectrum constants depend. The choice of param- c¢y= > ,
eters,p=4 andB=5.2, gives a coefficiert, that is in good (7.1t
agreement with the calculated from the DNS database, whictvhere = 7,/L and y=A;/2L. Thus the coefficientg,,
is at moderate Reynolds number. The valuepef4 is in  explicitly depends on how the filter length compares with
agreement with the expected dependence of the spectrum fpoth the large scale and the small scale in a turbulent flow.
low wave numbers? while the value of3=5.2 is in agree-  Such a dependence can of course be expected on physical
ment with experimental result$.This spectrum is valid for grounds. In principle, two values are possible & The
Sc~1; for large Schmidt number, a Batchelor spectrumpositive branch is selected and this is the valuecgtthat
should be used. In terms of the nondimensional variables gives the larger pointwise correlation between the exact and
model SGS contributionsee Eq(57) for a definition of the

(41) correlatior].

Figure 3 shows the variation of the model coefficient as
a function of the transverse coordinate in the shear layer at a
time when the turbulence is fully developed. The parameters
v and u have the following values at the center of the shear
layer: y~0.086 andu~6x10 3. The coefficient tends to
its expected value of unity away from the center of the mix-
ing layer, as can be seen in Fig. 3. This is consistent with an
improvement of the deconvolution procedtraway from
the turbulent region where EL3) approaches Eq9).

The model scalar spectrum, E@3), can be integrated
to give a model1D) spectrum,F 4(«4). Figure 4a) shows
that the model 1D spectrum is a good fit to the DNS data.
However, for robustness of the proposed SGS model re-

(51)

v=«kL
and

w=7nzIL=Re ¥sc1? (42)
the model spectrum becomes

Ez(9, 1) =Cze?*L%%0 ™5 () (In),

with

(43

5/3+p

JO%+c,

f(du)=exd —B(Iu)], (49)
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3.0 quired for more general applications, it is necessary that the
model coefficient not be very sensitive to the details of the
scalar spectrum. In order to quantify the sensitivity, the con-
sequence of changes in the two paramegrand, and in

S < _______________ T the model spectrum, E¢43), have been calculated as
| | s
P X\ J S S j: ------------------- 15 _________ “ o dey”
! ! 1 dcy
z | e a8
S ——Y———————-——M_a Figure 4b) shows the variation df ;, andI"; across the

shear layer for the case &f; /A =8 obtained with DNS pro-
file of k ande. As can be seen the sensitivities are not large
suggesting that the proposed SGS model is indeed robust.
Once the model spectrum, E@J), is fixed, the coeffi-
X/8, cientcy depends on the following parametéa) The turbu-
lent Reynolds numbeReg=Kk?/ ve, (b) A¢/L, which is the
filter length normalized by a large-scale length schleand
(c) the molecular Schmidt number. The turbulent kinetic en-
regy, k, can be estimated by the resolved-scale kinetic en-
ergy; the subgrid contribution is typically small. One ap-
proach to calculatd is to use the unsteady resolved-scale
field. An alternate approach is to use the turbulent dissipation
rate, €, calculated as the Reynolds average of its surrogate,
the subgrid dissipations;- Tijgija where 7;; is the subgrid
Reynolds stress ang|; is the strain tensor associated with
the filtered field.
N Thus, for a scalar with a given Schmidt numbey,de-
pends on the Reynolds numbdte, and the filter size,
A /L. This dependence can be tabulated prior to the LES in
an application of the model. Figurd& shows the depen-
dence of the model coefficient on the turbulent Reynolds
number forSc=1.4 andA;/A=8. The dependence is weak
and appears to be approximately logarithmic. The depen-
dence ofc, on filter size is shown in Fig.(6). A monotone
increase withA;/A (equivalently,A;/L) is observed.

1.0
-1.0

i
Ol-—o—____
[4)]

o
o
o
[3;]
N
o

FIG. 3. The behavior of the model coefficiemy, as a function of the
transverse coordinate in the turbulent shear layer; filter aizéA=8.

1 10 100 1000
V. SUMMARY OF THE PROPOSED SUBGRID MODEL

A moment-based reconstruction of the scalar field is for-
mulated. The scalar field is estimated by

Zu=Z+co(Z-2), (52)

where the single parametary, is an explicit function, Eq.
(51), of the normalized filter size\¢/L, and the normalized
Kolomogorov scale,s/L (equivalently the turbulent Rey-
nolds numberReg). Such a procedure for calculating en-
sures that the average subgrid variance is predicted. The fil-
tered valuef(2), is obtained using,, as a surrogate for the
scalar field,Z. The problem is usually posed with the objec-
tive of modeling the subgrid contributioh(Z) 4, defined by

oo ‘ | [ Eqg. (1), so that the final subgrid model is

-1.0 . X X i R —

f(Z)sg=T(Zm)— F(Z). (53)

0.00

-0.05

(b)
VI. THE DNS DATABASE
FIG. 4. (a) Comparison of the assumed 1D scalar spectrum to that obtained . i Lo i
in DNS; (b) sensitivity of model coefficient, to changes in scalar spectrum The SGS model is evaluated @npriori tests using our
parameters, and 8, whenA /A =8. previous DNS(direct numerical simulatiot® of the tempo-
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FIG. 5. Dependence of model coefficient ¢@ the turbulent Reynolds
number whem\; /L=0.17,Sc= 1.4, and(b) the normalized filter size when
Re=1000,Sc=1.4.

rally evolving shear layer which has been validated againsﬁ

C. Pantano and S. Sarkar

TABLE |. Key parameters of the analyzed field: The Reynolds number
based on vorticity thickness, and Taylor microscale), as well as grid
resolution of the vorticity thickness and the Kolmogorov scaje, The
smallest scalar scale ig= 7/\/Sc=0.857.

Re Al S,

W

Re, Al

135

T ®

323 5684 0.018 96 3.36

the x andz directions while the Reynolds-averaged statistics
(computed byx—z plane averagesare functions ofy and
time, t; here ,y,z) is used interchangeably with
(X1,X2,X3). A convective Mach number dfl ;.=0.3 which is
small enough to neglect compressibility effects is considered.
The DNS database used in thepriori tests correspond to a
nondimensional timey=tAU/J, ,=323, well into the re-
gime of fully developed turbulence. HertkU denotes the
velocity difference across the shear layer whilg, denotes
the initial vorticity thickness of the shear layer. At the cen-
terline, the turbulent Reynolds numb&g = k?/ ve= 1000,
while the microscale Reynolds numbétg, =qN/v=135.
The molecular Schmidt numbe3,c= »/D = 1.4 wherev and

D are the molecular transport coefficients of momentum and
scalar, respectively. A 256192x128 grid with uniform spa-
tial step sizeA in all directions is used along with fourth-
order accurate spatial discretization and third-order Runge—
Kutta integration in time.

Figure 6 shows an instantaneous vertical cut of the scalar
field across the shear layer. It can be observed that the scalar
field is well developed and a wide range of scales are
present. Table | summarizes some key parameters of the flow
field at this instant; further information on the simulations is
available!® Figure 7 shows the root-mean-squ&ram.s)
scalar fluctuationZ,ms=\(Z%)—(Z)?, as a function of the
cross-stream coordinatg, normalized by the vorticity thick-
ness,8,=AU/(d(U)/dy) .. The Reynolds average is de-
oted by(-) to distinguish it from the filtering operation.

both experimental work and other DNS. The free-stream

value of the scalar i2=0 andZ=1 in the upper and lower

streams of the shear layer, respectively. In the rest of the

paper we will use for the scalar normalized by the imposed
scalar differenceAZ=1. The turbulence is homogeneous in

0.20 ; ; ‘
i 1
I 1
! 1 1
i | i
: | J
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1 1 )
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FIG. 6. Instantaneous scalar profile at a vertical cut across the turbulerlG. 7. Profile of the scalar r.m.s. in the fully developed turbulent shear

shear layerr=tA U/5m0= 323.

layer; DNS result atr=tAU/6a,o=323.
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FIG. 8. Spectra in the-direction at7=323. The vertical dashed lines with
symbols correspond to the filter sizes used hArgdA=4,8.
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s—a Exact n=5
= Model n=5
= Exact n=7

VII. SUBGRID SCALE MODEL EVALUATION X
0.020 |--------- ,, ST +— Model n=7 |~

The proposed model is based on a moment-based recor
struction procedure and consists of E§3) with the esti-
mated scalar field given by E¢2). The performance of the /o
model is assessed using our previous BN& the tempo- 0,010 }------- 4 oo Ny
rally evolving shear layer. A late-time field corresponding to R
fully developed turbulence is used. Two values of the filter
size,A¢, are used to filter the database in #eriori tests.
The filter sizes ofA;/A=4 and 8 correspond to 12 and 6 s
points per vorticity thickness, respectively. These are indi- 9-000 /% 205 0.0 o5 T To
cated on the scalar spectra shown in Fig. 8. The coefficient X/9,,

Co, is obtained using Ed51) and the required parameters in
the model scalar spectrum, E@fl3), are evaluated using FIG_. 10. Performance of the moc_:lel in predicting the subgrid contribution to
and e from the DNS database. various moments of the scalar; filter siag/A=4.

A. Prediction of algebraic nonlinearity, (ZT’Q)

| i DNS AJA=4 Profiles of the exact value ¢Z; ), an average over the
! : Model A/A=4 x—z plane of the subgrid contributgi]on
| |+ DNS a/A<8 P g

X | o-e Model AJA=8 o
NN ' Z35=2"—(2)", (54)
0.010 "
are obtained from the DNS database and compared with
model predictions. Values af in the range Z2n=<8 have
been used along with various filter sizes.

Figure 9 compares the model with the exact profile of
<Z§g>. As can be seen, the model is in excellent agreement
with the exact values of the averaged SGS contribution. Un-
like Fig. 2 where the agreement is exact, there are small
differences between exact and predicted values in Fig. 9 be-
0.000 - 05 0.0 05 o cause only the model spectrum wkland e as inputs is used

X,/8, for obtainingc, instead of the full DNS data.
Figures 10 and 11 shows that the range of mometits,
FIG. 9. Performance of model in predictimg_gg>; filter sizeA;/A=4,8. with n=3-8, studied here are well-predicted by the model.
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() FIG. 12. Exact and model average behavior for an Arrhenius nonlinear
0.000 Lud - g function with T,=50, Z,,=0.1 andA; /A =4 and 8;(a) piecewise tempera-
-1.0 . . 1.0 ture profile, Eq.(55), and(b) smooth temperature profile, Ep6) with &
=0.1.

FIG. 11. Performance of the model in predicting the subgrid contribution to

various moments of the scalar; filter siag/A=8. . . . .
Equation(55) is chosen so as to realize a temperature field

associated with a system with fast chemistry; it is recognized
The discrepancy between model and exact values increastsat, in the infinitely fast limit, the overall rate is determined
somewhat with the order of the moment and filter size buby the scalar and the conditional scalar dissipatfobut

always remains less than 10%. rates of production of trace species such as oxides of nitro-
gen can have this Arrhenius form, in this limit. In the second
B. Prediction of the Arrhenius nonlinearity, <e;gTa/T> case, the temperature gradient across the flaweZg;, is

smoothed out by the use of a hyperbolic tangent prdfile

Our intention here is to test the performance of theconnecting the values ofi T/dZ in the upper and lower
model for a strongly nonlinear function such as the Arrheniussireams as follows:

reaction rate typical of chemical reactions. Consider the non-

linear functione Ta/T, whereT=T(Z). Two choices for the dT _
mapping between the scala, an(d )the temperatur€ are dizi(Tf_l) Z+225t(zst— 1)(1+tanmz_z""t)/5))]'
selected. In the first case, a piecewise linear mapping, that (56)
corresponds to the Burke—Schumann infinitely fast chemisyere 5 is a smoothing factor. Furthermore, the model scalar
try approximation, is used, is limited to 0<Z, =<1 to satisfy the natural constraints of
1+ (Ti—1)Z/Z, if Z<Z, the scalar field.
T(2) (55 Results forZ,=0.1, T;=10, T,=50 and §=0.1 are

H(M=D(EZ=D(Zs=1) it Z>Z5 shown for filter sizesA;/A=4 and 8 in Figs. 1@&) and
whereT; is the adiabatic flame temperature ang is the  12(b). These values are representative of some hydrocarbon-
stoichiometric value of the mixture fraction. The referenceair combustion problems. Both choices for the temperature
cold temperature is normalized to unity in both freestreamsdependence on the scalar, a piecewise linear profile, Eqg.
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FIG. 13. (a) Various choices of the functional depepndence of temperature
on mixture fraction in the SGS model evaluatiofis) the corresponding
Arrhenius term. The adiabatic flame temperaturd s 10 while the acti-

vation energy temperature 15,= 100.
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FIG. 14. Influence o, on the model behavior. Arrhenius nonlinear func-
tion with T,=100, T;= 10, and smooth temperature profile wiih-0.1. The
filter size isA; /A=8.

peak similar in magnitude to that in the case with=0.1.
Potential reasons for the difference between model predic-
tions and exact values that occurs whipdeparts from the
value, 0.5, are the more intermittent mixing events at the
edge of the shear layer resulting in larger subgrid fluctuations
as well as the increased nonlinearity of the scalar depen-
dence, see Fig. 13.

Figure 15 shows the effect of the smoothing factor asso-
ciated with the temperature profil&, for Z;,=0.5. When the
profile becomes sharpé&maller value o) the contribution
of the subgrid term increases. The model performance re-
mains very good even for sharp&(z) profiles.

C. Instantaneous performance of the SGS model

Figure 16 shows a scatter plot of the exact versus the

(55, and a smoothed profile, E456), lead to the same model SGS contribution fan=2 andA;/A =8 calculated at

trend: the model prediction is very good far /A=4 but,
when the filter size id\; /A =8, the model underpredicts the

subgrid peak contribution by about 35%.

Calculations have been performed for a wider range of
parameters to further investigate the model behavior in the |
case of the larger filter sizé\; /A =8. The choice of activa-
tion energy temperaturd,= 100 and the flame temperature,
T;=10 correspond to chemistry representative of large acti-
vation energy typical of hydrocarbons. Two values of the
stoichiometry, Z,;=0.2 and 0.5, and two values of the
smoothing factor of the temperature profiées 0.1 and 0.25,
are used. Figure 18 shows the different functional depen- -16-08
dences of the temperature profile on the mixture fraction
while Fig. 13b) shows the corresponding Arrhenius nonlin-

earity.

Figure 14 shows the effect of stoichiometric mixture
fraction on the behavior of the model for the large filter size. -1.0
It can be seen that the agreement is betteZfeg+ 0.5, when
the average location of the flame is at the center of the mix:
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FIG. 15. Influence of the smoothing factér in the temperature profile.

ing layer. WherZs;= 0.2, the prediction follows the shape of Arrhenius nonlinearity withT,=100, T,=10, Z,=0.5, and filter size
the exact profile; however, there is underprediction of thea,/a=s8.
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FIG. 16. Scatter of the model prediction with respect to the exact subgrid

contribution to the filtered value &?; A;/A=8.
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FIG. 17. Correlation between exact and model SGS contribution for poly-
nomial nonlinear functionZ", with n=2,4,6,8 as a function of self-similar
coordinate, for(a) A;/A=4 and(b) A{/A=8 and later time,r=tAU/

8,0="323.

FIG. 18. Correlation between exact and model SGS contribution for Arrhen-
ius nonlinear function, withT ;= 100, T;= 10, and two choices for the sto-
ichiometric mixture fractionZs,=0.2 and 0.5 as a function of self-similar
coordinate, forA; /A=8.

the mixing layer centerplane. As can be seen there is some
scatter. Scatter igot surprisingsince there is statistical un-
predictability of the subgrid values of the scalar even if the
exact filtered field is available. Furthermore, the single-
parameter model tested here is the simplest-possible case that
guarantees only the prediction of the second moment of the
subgrid contribution. The amount of scatter could perhaps be
improved if a more complex model and/or a different opti-
mization technique is used in the calculation of the coeffi-
cients.

To further examine the model we investigate the behav-
ior of the correlation coefficient between the exact and model
SGS contributions defined by

<f(ZM)sgf(Z)sg>

Nz 9(F(2)2)

Figures 17a) and 17b) shows the behavior of the correlation
coefficient for the polynomial nonlinear functiod,", as a
function of the self-similar coordinate. It can be seen that the
correlation coefficient is very high whefi{/A=4 for all
values ofn considered here, with a value above 0.94. For
A¢/A =8, the correlation, although lower than in the previ-
ous case, remains good. The minimum value of the correla-
tion coefficient is 0.8 and occurs for=_8.

Finally, Fig. 18 shows the correlation coefficient for the
Arrhenius nonlinear function witfi,= 100, T;= 10, and two
choices for the stoichiometric mixture fractiaf,;= 0.2 and
0.5 as a function of self-similar coordinate, far/A=38.

The correlation coefficient is above 0.8 in most of the shear
layer.

Figures 19 and 20 show instantaneous contour plots of
the exact and model SGS contribution for a filter size of

C(E,M)= (57)

A¢/A=8 and moments witm=2 and 8 at the center plane.
The model is capable of capturing the structural characteris-
tics in both cases very well.



Phys. Fluids, Vol. 13, No. 12, December 2001 A subgrid model for nonlinear functions 3815

FIG. 19. Contour pIotsZ_§g in the centerplanej/A
=8. (a) Exact, andb) model prediction.

FIG. 20. Contour ploti_§g in the centerplane);/A
=8. (a) Exact, and(b) model prediction.
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VIIl. CONCLUSIONS ties, (Z2,) in this instance, leads to good results for high-
order nonlinearities appears to be valid in this problem. This
In applications of LES such as radiation heat transfelis encouraging for LES applications that involve functions
and combustion, models are required for strongly nonlineagith a polynomial nonlinearity such as tié dependence in
functions, f(Z), of a scalaiZ. A moment-based reconstruc- 4iation heat transfer as well as the species and temperature
tion procedure to model the subgrid contribution to the fil- yohendence on the mixture fraction in solutions of the
tered valuef(Z), is proposed here. In this methodology, the girained laminar flamelet model.
scalar field is estimated by an approximate deconvolution  Tpq pointwise values of the modeled subgrid-scale con-
operation, Eq(52), and the estimated scalar field is used as ribution to Z" show scatter with respect to the exact values.
surrogate for the exact field in the calculation of the subgri his scatter is to be expected because of the unpredictability
contribution by Eq/(53). Unlike the usual deconvolution op- of the small-scale motion giving only the filtered field.

eration with given coefficients, the coefficients in the expan- The Arrhenius nonlinearity in the reaction rate is a more

sion are allowed to be variable and instead obtained by re- . . -
challenging problem because the ratio of activation tempera-

quiring that the statistical moments of the scalar field up to re to flame temperature is typically a large number of
certain order are matched. The usual deconvolution operatio . .
P 75(10). It is found that the model works well for a diluted

is not adopted because substantial errors in predicting thh q b ; ith stoichi i it fracti
subgrid scalar variance are found anpriori tests using a ydrocarbon system with- stoichiometric: mixture fraction,

turbulent shear-layer database. A Taylor series expansion @Zfst:o'5’ corresponding to the average flame Ioc;auon being
the nonlinear function ofZ around its filtered value og N the turbulent core of the shear layer. For typically more

motivates ourmnsatzof matching subgrid moments to deter- "€@listic  mixture fractions ofZ;=0.1,0.2, the finer-
mine the unknown coefficient. resolution application of our proposed model gives good re-

The simplest possible form of the moment-based reconsults with less than 10% deviation. The coarse-resolution ap-

struction, one that involves a single unknown parameter g@lication with 6 po.ints per vort.icity. thickness gives profiles
that the average subgrid contributionZ® is matched by the of tr_le averaged flltere_d contrlbutlo_n _that follow the exac_t
estimated scalar field, is evaluated using our DNS databad¥©file; however, there is underprediction of the peak contri-
of a turbulent shear layer. Two filter sizes are testegiA bution to the .subgr_|d reaction rate by up to 35%._ Note that
— 4 corresponding to 12 points per vorticity thickness, andihe coarser filter size corresponds to.a very stringent test;
A¢/A=8 corresponding to 6 points per vorticity thickness. €Ven a Reynolds-averaged closure typlcally uses su_ch a reso-
The single coefficientc,, involved in the proposed lution or better. Even so, future refmgments to- improve
model, Eq.(52), depends on the scalar spectrum. A simplem0d6| performance with such coarse grids are desirable. Fur-
model spectrum is found to be sufficient to estimate the cothermore, investigation of the effect of using a coarse LES
efficient and give an excellent prediction of the averageddfid with respect to a fine DNS grid shows that keeping the
subgrid variance; furthermore, the sensitivity of the coeffi-numerical grid finer than that used for defining the filtered
cient to the two parameters embedded in the model spectrufield ensures that the model performance does not deteriorate
is found to be small. Thus, additional input of turbulencedue to numerical resolution.
physics via the scalar spectrum is necessary to match the Further tests of the proposed model are reported in the
average value of the subgrid contribution2é; simple re- Appendix. The case of a more general model, where a test
construction from the filtered field is not sufficient in this filter, wider than the main filter, is used for the second filter-
problem. The chosen model spectrum which has Kolmoging operation is considered. The results are found to be in
orov scaling in the inertial range leads to the physically ap-agreement with the case of equal test and main filters if the
pealing result that the model coefficient is a function of howcalculation of the model paramete, is done consistently.
large the filter length scale), is in relation to both the In LES applications, the grid resolution is coarse relative to
large-scale length scalk, and the small-scale Kolmogorov that used to generate the DNS database. It is found that, if
scale,nz. In an LES application, the dependencecgfon  the LES grid size is larger than twice the filter size, the effect
A:/L, and 5,/A; (equivalently, the turbulence Reynolds of coarse grid discretization is negligible.
number,Rg) can be tabulated prior to the calculation.
The model spectrum used here has Kolmogorov inertial
range scaling and dissipation range scaling typical of incom-
pressible turbulence. In more general situations, other effects
on the unresolved scales such as compressibility and rotatiochCKNOWLEDGMENTS
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APPENDIX: ADDITIONAL A PRIORI TESTS 0.08 , .

Thea priori tests using our DNS calculation use the full, i :_; EA):)?;I?;ZZ
highly-resolved data set so that the SGS model can be teste | « = Exact n=d
separate from considerations of numerical resolution. How-o.06 P "l e s Model n=4 |
ever, in an actual LES calculation, the SGS contribution has A v Exact n=6
to be evaluated from the available filtered field represented 4 § —
on a grid that contains fewer points than the number of ;’f’“ oo Model n=6
points necessary for a fully resolved field. The lack of infor- 004 F-=—==--~ i N --|+— Exactn=8 |-
mation that results from the use of a coarse-grid representa i Mlodel n=8
tion of the data can be incorporated in a modifegbriori
test wherein the filter transfer functioB(«), is replaced by ., | %/ _ Ry
G(x)H(kg—«) in Egs. (34—(36), whereH(xy— «) is the !
unitary step functior{unity for k<«4 and zero fork=«), i
and x4 is the cutoff wave number associated with the coarse - ‘
grid. %%4% Y . o5 10

The performance of the proposed model, EL7), was ' /3
gauged in the main body of the paper with the méar (a) ¢
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FIG. 21. Effect of numerical grid resolution on model performankte{A

=4 and(a) Ag=A¢/2 and(b) Aj=A; and later time;r=tAU/§,,=323.

FIG. 22. Effect of numerical grid resolution on model performankgfA
=8 and(a) Ag=A/2 and(b) A=A and later times=tAU/§,0=323.

filter and testtilde) filters assumed to be the same. However,
there are situations where the test filter should have a larger
characteristic length than the main filter. One such situation,
that occurs in many practical applications of LES, is when
the grid size for the LES is taken to be the same as the size
of the tophat filter. When a spectral cutoff filter is used in-
stead of a tophat filter, it is again necessary to distinguish
between the main and test filters becadseZ giving Zy,

=Z. The model, Eq(17), has the following transfer func-
tion:

M =G (k) H(kg— k)[1+Co(1—Gy(k)H(kg— )],
(A1)

whereG;,(«) is the transfer function of the test filter. Notice
that the test filter does not need to be of the same type as the
implicit LES filter.

To further explore the properties of the proposed one-
parameter model, we study the effect of the test filter and a
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o FIG. 24. Performance of the model, E4.7) for an Arrhenius nonlinear
FIG. 23. Performance of model when the test filter is not the same as thgnction with T,= 100, T,= 10, and two choices for the stoichiometric mix-

main filter; A,=2A for (a) A¢/A=4 and(b) A;/A=8 and later timer  tyre fraction,Z;,=0.2 and 0.5. The test filter i§,= 2A while the grid filter
=tAU/§,0=323. is Ag=A/2. Two choices of the main filter are show@) A¢/A =4 and(b)
A/A=8.

coarse grid in the performance of the model. For consistency

with Sec. IV B, the main filter, grid discretization filter, and P . . .

test filter are parameterized by their widths,, A4, andA,, asz E2(#¢0) G(#¢0) G* (#9)H (g — ko)[1— Gy( 1) ]
respectively. In the model performance calculations that are

presented below, the model coefficieny, is calculated tak- X[1—G¥ (ko) ][ 1— G(#p) G* (k) ]dkp. (A4)
ing into account Eq(AL). The new set of coefficients,, to - -
be used in Eq(33) are The filtered field,Z, and test-filtered fieldZ, are ob-

w R R tained after processing the field that results after a spectral
a0=f Ez(ro)[ G(#0) G* (#6g)H(Kkg— ko) — 1] cutoff filter, with a cutoff wave numbex  corresponding to

- the numerical grid size, is applied to the DNS dataset.

X [1—G (ko) G* (p)H (1g— A2

[1=Gla0) G™ (1) H (1™ o) Jdico, (A2) 1. Effect of grid resolution

a;= fw EZ(KO)é(KO)é*(KO)H(Kg_KO) A priori evaluation of the model is performed for poly-

nomial nonlinear functionsZ", with n=2,4,6, and 8. Odd

powers ofn, are not shown for brevity since the results are

similar to the ones obtained for the even powers. Two filter
(A3)  widths are tested\; /A =4 and 8 with the test filter identical

X[2—Gy(#o) — G (#0) ][ 1~ G(#e0) G* (o) ]d ey,
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