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Turbulence During the Generation of Internal Tide on a Critical Slope
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Three-dimensional direct numerical simulations are performed to examine nonlinear processes during
the generation of internal tides on a model continental slope. An intense boundary flow is generated in the
critical case where the slope angle is equal to the natural internal wave propagation angle. Wave

steepening, that drives spanwise wave breaking via convective instability, occurs. Turbulence is present
along the entire extent of the near-critical region of the slope. The turbulence is found to have a strong
effect on the internal wave beam by distorting its near-slope structure. A complicated wave field with a
broadband frequency spectrum is found. This work explains the formation of boundary turbulence during
the generation of internal tides in the regime of low excursion numbers.
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Introduction.—Energetic internal waves, commonly
known as internal tides, are generated in the ocean by tidal
flow interactions with bottom topography: seamounts,
ridges, slopes, canyons, etc. [1]. Internal tides are thought
to be essential to ocean mixing by providing a dynamical
energy pathway from the barotropic tide to propagating
internal waves that then lead to mixing in the ocean inte-
rior. Observations find enhanced mixing near seamounts
[2], ridges [3,4], and continental slopes [5-8]. The reflec-
tion of internal waves at a topographic slope with critical
angle can lead to turbulent mixing and has been studied in
the laboratory and by numerical simulations, e.g., [9].
Here, we investigate the different problem of internal tide
generation by barotropic tidal flow over topography.

Theoretical investigations, e.g., [10—12] of internal tide
generation rely on linear theory. As discussed by [1], two
nondimensional parameters are especially important:
(i) the criticality parameter, € = tan(8)/ tanf, which is the
ratio of the topographic slope tan(3) to the slope of internal

wave characteristic tanf = /(Q% — f2)/(N2 — Q?) with
Q) the frequency of the barotropic tide, f the Coriolis
frequency and N, the background value of buoyancy
frequency, and (ii) the excursion number, Ex = U,/Q/,
which is the ratio of excursion of a fluid particle by a tidal
velocity, Uy, to the horizontal length of topography, .
Ocean slopes are long with eEx < 1 so that linear theory
applies except for critical slope € = 1. The consequences
of nonlinearity in the critical case and with eEx < 1 is not
well understood. Nonlinear aspects have been studied in
previous laboratory [13—15] and numerical investigations
[16,17]. In particular, the authors of [14] find that the
resonant wave-slope interaction in the critical case leads
to a laminar oscillating boundary layer with maximal
velocity. However, turbulence has been overlooked in pre-
vious investigations because laboratory experiments were
at low Reynolds number and computations were designed
for larger scale dynamics. This motivates our three-
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PACS numbers: 92.10.Lq, 47.27.E—

dimensional direct numerical simulations that resolve tur-
bulence and fine-scale internal waves.

Problem setup.—An oscillatory pressure gradient, F =
—UyQ) cos(Q 1) forces tidal flow over a slope and leads to a
barotropic velocity, U(x) sing, where ¢ is the tidal phase.
As shown in Fig. 1(a), the bottom topography is irregular: a
slope between x = 4.5 and x = 8.0 m is smoothly con-
nected to horizontal sections before and after it. For sim-
plicity, we do not include rotation.

For all cases, N, = 8 rads/s and () = 1 rad/s, which
gives the wave angle § = 7°. The kinematic viscosity, v =
107% m?/s, is that of water. The Prandtl number is chosen
to be Pr = 1, smaller than the value of Pr = 5 for thermal
transport in water, so as to avoid an unnecessary increase in
computational grid points. Simulations at subcritical slopes
B < 7° did not result in turbulence for the range, Ex < 0.1,
studied here. The Reynolds number is a key parameter and
is measured by Re = alU,/v witha = U,/Q, or by Re, =
Uyd,/v = V2Re, based on the Stokes boundary-layer

thickness, 8¢ = /2v/(). The salient features of generation
at a critical slope will be brought out by discussion of the
following case: slope length, / = 3.5 m; current velocity,
Uy = 0.125 m/s; Ex = 0.036; € = 1; Re = 15625; and
Re, = 177.

We now place the numerical experiment in context by
comparing nondimensional parameters with those corre-
sponding to an oceanic slope. An example of conditions at
a continental slope in deep water is as follows: a tidal
amplitude of U, = 0.025 m/s, a tidal frequency of ) =
1.4 X 10~* rad/s corresponding to the M, tidal period of
12.4 hrs, a low latitude with f = 3.5 X 107 rad/s and
N =1 cph =1.74 X 1073 rad/s. A representative slope
length of 5 km leads to an excursion number of 0.036
that matches our choice of Ex = 0.036. Our critical slope
angle 8 = 7° is slightly larger than the value of 8 = 4.5°
in the ocean example. The Stokes Reynolds number, Re, =
177, of our case is smaller than the value of Re;, = 2975 in
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FIG. 1 (color).

(a) Internal wave field visualized by a slice of dw/dz field in x-z plane. (b) Power spectra of the baroclinic velocity

Uper(X, y, 7, 1) field (semi log-scale) at the two locations A and B, marked in part (a). The time series is taken over 15 cycles.

the oceanic example but still sufficiently large to exhibit
turbulence in the case of critical slope as will be
demonstrated.

The three-dimensional, unsteady Navier-Stokes (NS)
equations under the Boussinesq approximation for density
variation are employed. The NS equations, written in
generalized coordinates, are numerically solved on a non-
staggered grid that conforms to the bottom boundary.
Spanwise derivatives are treated with a pseudospectral
method, and the other spatial derivatives are computed
with second-order finite differences. A third-order
Runge-Kutta method is used for time-stepping, and viscous
terms are treated implicitly with the ADI method. The
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FIG. 2 (color).
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numerical domain consists of a rectangular box of 13 m
length, 4 m height, and 1 m width whose bottom boundary
is coincident with the slope topography. The grid size is
260 X 260 X 64 in the x, z, and y directions, respectively,
with stretching in the x and z directions. The grid spacing is
chosen to resolve the viscous turbulence scales and the
flow resolution is confirmed by examining the spanwise
spectrum. Each simulation is computationally intensive
because of the small time step that is required and the large
number of cycles that are simulated. Periodicity is imposed
in the spanwise, y, direction. Zero velocity and a zero value
for wall-normal density flux are imposed at the bottom.
The upper boundary and the two x = constant boundaries
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The resonant generation of the internal tide is shown by the normalized kinetic energy of the flow field

[(u(x, z, t))|?/U3 along with the slope topography in black color at time t = 87, 87T + 1/4T and 8T + 1/2T in (a), (b), and
(c) respectively. The arrows indicate the instantaneous velocity field. Bottom inset in each top panel figures indicates the corresponding
tidal phase. In (d)—(f), vertical turbulence intensity is shown at a time corresponding to that of the figure just above it.
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FIG. 3 (color online). Visualization of spanwise instability.
(a) Isosurface of density preceding wave breaking,
(b) Isosurface of density at wave breaking (1 =T + 1/4T),
(c) streamwise vorticity at same time as part (b).

are artificial boundaries where Rayleigh damping or a
“sponge’ layer is used.

Results.—The remarkably complex wave pattern, shown
in Fig. 1(a), includes energetic internal wave beams coin-
cident with the slope angle, beams at steeper angles, and
internal waves generated by boundary-layer turbulence
that have a wide range of phase lines. The internal wave
field is assessed by a power spectrum analysis of the
baroclinic velocity field given by wp,(x v,z 1) =
u(x, y, 2, 1) — Upare(x, 2, ), Where the barotropic compo-
nent is the free-stream value of the velocity. Figure 1(b)
shows the power spectra at two locations A and B at
different heights. The spectra show several temporal har-
monics (n{), n € N)), subharmonics o € [0, {)) and inter-
harmonics (w, + n{), w, € [0, )) having significant
energy. The discrete spectral peak at the barotropic tidal
frequency, (2, in Fig. 1(b), corresponds to an energetic
linear response which, in physical space, corresponds to
the strong beams (upward propagation in black and down-
ward in white) shown in Fig. 1(a). The spectrum at point A
shows discrete peaks at the second and third harmonics as
well as a significant band of waves with w > N. These
super-N waves are generated by high-frequency turbulence
inside the boundary layer as in the studies of [18,19]. The
spectrum at point B, further away from the slope, has the
same energy at the fundamental and second harmonic
observed at point A, as well as an additional discrete
peak at the first subharmonic. The range of super-N waves
in the spectrum is much smaller at point B relative to that at
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A, since the background does not support freely propagat-
ing waves with w > N.

Resonant wave-slope interactions lead to kinetic energy
as large as 15 times that of the barotropic current as shown
in Figs. 2(a)-2(c). The intense boundary-layer flow be-
comes turbulent via the cumulative effect of convective
and shear instabilities, as will be shown later. The turbu-
lence interacts with the internal wave beams so that they
buckle and twist as shown in Fig. 2(b), a phenomenon not
observed in recent experimental studies [13,14] at low
Reynolds number. The rms turbulent velocity can be quite
large, as much as 50% of the external barotropic tidal
velocity. The spatial distribution of turbulence is illustrated
by the vertical component, w,,, in Figs. 2(d)-2(f).
Turbulence is convected by the beam to the top of the
slope in Fig. 2(e). The patches of turbulence at the top
corner of the slope in Fig. 2(f) correspond to residual
turbulence generated during the previous phase. There is
a significant amount of turbulence observed even outside
the boundary layer.

We have identified two mechanisms, convective and
shear instability, that cause transition to turbulence. The
intensified velocity during the upslope motion becomes
large enough to steepen the wave near the bottom bound-
ary. Eventually, a spanwise instability develops as illus-
trated by Fig. 3. The density isosurface which is smooth in
Fig. 3(a) develops spanwise corrugations during the insta-
bility as shown in Fig. 3(b). These coherent corrugations
are associated with pairs of counter-rotating streamwise
vortices as shown in Fig. 3(c). The wavelength of the
spanwise instability is intrinsic to the flow and is not
observed to change upon changing the spanwise domain
length. Spanwise instability has been implicated in other
examples of breaking [20,21] of free internal waves. Terms
calculated to understand the energetics of the observed
instability are show in Fig. 4 along with isopycnals. The
overturned isopycnals show the kinematically unstable
structure of the wave due to wave steepening. The positive
buoyancy flux in the overturned region is significant as
illustrated by Fig. 4(b). The buoyancy flux transfers energy
from the potential mode to the kinetic mode resulting in the
corresponding patch of turbulent kinetic energy (TKE)
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FIG. 4 (color online). ~ Contour of Ri,, buoyancy flux, production and turbulent kinetic energy at t = ¢ + 1 /4T in (a), (b), (c) and (d),
respectively. Arrows indicate the vector field at a certain position at that instant of time. Isopycnals shown to indicate wave breaking

via wave steepening.
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FIG. 5 (color online). Streamwise velocity profile as a function
of vertical height and phase at three different locations X = 5 m,
6.5 and 8 m shown in Fig. 1(a) at t = 8T, 8T + 1/4T, 8T +
1/2T and 8T + 3/4T in (a), (b), (c), and (d), respectively.

observed in Fig. 4(d). The diagnostics show that a con-
vective (buoyancy driven) instability is clearly present.
Nevertheless, the role of shear instability cannot be over-
looked. Figure 4(a) shows the gradient Richardson number
Ri, = N?/$* with N and S the local values of mean buoy-
ancy frequency and mean shear, respectively. A substantial
region with low Ri, can be seen. There is significant shear
production by turbulence (although smaller than the peak
buoyancy flux at this time) corresponding to that region as
shown by Fig. 4(c) as well as corresponding patches of
TKE in Fig. 4(d). The coherent counterrotating vortex pairs
interact and, after a short time, there is breakdown into
fine-scale turbulence. During subsequent cycles, turbu-
lence levels increase and decrease corresponding to
changes in the near-bottom velocity.

The internal tide causes the mean velocity to have a
complex behavior as can be seen in Fig. 5. Velocity profiles
are shown at 3 locations: x = 5 m at the beginning of the
slope, x = 6.5 m at midslope, and x = 8 m at the end of
the slope. Figure 5 shows that, near the bottom, there is a
large increase of horizontal velocity with respect to the
external (barotropic) current and, furthermore, this veloc-
ity shows significant variation among the 3 locations. At
the midslope location, x = 6.5 m, the near-bottom velocity
reaches its maximum value at ¢ = 0° and ¢ = 180° when
the barotropic tide is minimum and, consequently, the
turbulence level on most of the slope is maximum when
the barotropic current is minimum.

Conclusions.—Oscillating flow over a long slope (low
excursion number) is examined using three-dimensional
numerical simulations. In the critical case, the generated
internal wave propagates at an angle identical to the slope
angle. We show numerically that, owing to the resonant
wave-slope interaction in the critical case, the boundary
flow is strongly intensified as in the laboratory experiment
of [14] and, furthermore, at the higher Reynolds number of
the numerical simulations relative to the laboratory cases,

the flow becomes turbulent. Transition to turbulence in-
volves wave steepening at the slope that is followed by a
convective (buoyancy driven) instability that leads to three-
dimensional fluctuations in the form of coherent stream-
wise vortices. In addition, there is shear instability associ-
ated with subcritical Richardson numbers in the intensified
boundary flow. Recent observations [6-8] find hot spots of
turbulence in the vicinity of near-critical slopes, and criti-
cal reflection of incident internal waves has been suggested
in the literature as a possible explanation. Our results imply
that the mechanism of critical generation must also be
considered as a potential explanation for enhanced turbu-
lence near slopes.
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