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The evolution of a stratified shear layer with mean shear in the horizontal direction,
orthogonal to gravity, is numerically investigated with focus on the structural
organization of the vorticity and density fields. Although the Reynolds number
of the flow increases with time, facilitating instabilities and turbulence, the bulk
Richardson number signifying the level of stratification also increases. Remarkably
rich dynamics is found: turbulence; the emergence of coherent core/braid regions
from turbulence; formation of a lattice of dislocated vortex cores connected by thin
horizontal sheets of collapsed density and vorticity; density-driven intrusions at the
edges of the shear layer; and internal wave generation and propagation. Stratification
introduces significant vertical variability although it inhibits the vertical velocity. The
molecular dissipation of turbulent kinetic energy and of turbulent potential energy are
both found to be substantial even in the case with highest stratification, and primarily
concentrated in thin horizontal sheets. The simulation data are used to help explain
how buoyancy induces the emergence of columnar vortex cores from turbulence and
then dislocates these cores to eventually form a lattice of ‘pancake’ eddies connected
by thin sheets with large vertical shear (horizontal vorticity) and density gradient.

1. Introduction
Stratified horizontal shear flows involving small-scale turbulence occur in a variety

of situations: in oceanic and atmospheric flows around topography, at the edges of
energetic ocean currents, in coastal fronts, in river outflows, and behind self-propelled
bodies. The prototypical case of the evolution of a stratified shear layer where
the velocity varies in the horizontal direction, orthogonal to gravity, has not been
previously considered and is the subject of the current investigation.

The simplest case of stratified horizontal shear flow, an unbounded flow with
constant mean shear perpendicular to a linear mean density gradient, was numerically
simulated by Jacobitz & Sarkar (1998, 1999). Turbulence was found to be more
energetic and with larger vertical buoyancy flux when a given level of mean shear
was horizontal rather than vertical. This observation was attributed to two reasons:
first, stratification does not directly affect the Reynolds shear stress and production
of turbulent kinetic energy in horizontal shear flow and, second, turbulence remains
three-dimensional so that the enhanced turbulent kinetic energy results in augmented
vertical transport. It was also found that, at a critical value of the Richardson number,
turbulence decays in both cases, but this critical value is larger in horizontal shear
flow than vertical shear flow. Horizontal shear flow near a wall was investigated by
Armenio & Sarkar (2004) who simulated channel flow past sidewalls. They found
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an increase in turbulence levels and eddy diffusivity with respect to those observed
in previous studies of channel flow with vertical shear (Komori et al. 1983; Garg
et al. 2000; Armenio & Sarkar 2002). Turbulent wakes behind spheres and other
bluff bodies have both horizontal and vertical shear. The growth of the wake in the
vertical direction is quickly arrested with subsequent collapse, while it continues to
grow horizontally. The mean velocity profile in the cross-stream direction is inviscidly
unstable leading to the formation of long-lived eddies with large horizontal extent
and small vertical extent in the far wake as observed in the laboratory experiments of
Lin & Pao (1979), Spedding, Browand & Fincham (1996), Spedding (1997), Bonnier,
Bonneton & Eiff (1998), the DNS of Gourlay et al. (2001), and the large-eddy
simulations (LES) of Dommermuth et al. (2002). Also, three-dimensional, small-scale
turbulence is found to be inhibited. Internal gravity waves were observed in the wake
experiment of Bonneton, Chomaz & Hopfinger (1993) and also in the simulations
of Gourlay et al. (2001) and Diamessis, Domaradzki & Hesthaven (2005). The
stabilization of an initially turbulent jet by stratification has been experimentally
studied by Voropayev, Smirnov & Brandt (2001) who find that the jet breaks down
into a collection of vortex dipoles.

Shear layers with horizontal shear have been observed in the ocean. Flament et al.
(2001) have studied a zonal horizontal shear flow off the island of Hawaii using
drifting buoys and sea-surface height anomaly and find that the initially thin shear
layer grows by vortex pairing. Munk et al. (2000) show visualizations of sea spiral
eddies obtained using sunglint, and analyse the dynamics of the spiral eddies. A nice
example of Kelvin–Helmholtz (KH) rollers in a horizontal shear layer is provided by
their figure 2. Horizontal shear instabilities at the Norwegian Coastal Current front
were observed using synthetic aperture radar by Johannessen et al. (1996). The scale
of the horizontal shear in the preceding examples is of the order of 1–100 km and
rotational effects are important. Farmer et al. (1995), combining acoustic imaging
with CTD surveys, observed strong horizontal shears, 0.02–0.10 s−1, on a scale of
100 m in a tidal convergence front in the Haro Strait. It is difficult to quantitatively
observe horizontal shear at scales less than tens of metres although there have
been a handful of efforts as discussed by Müller et al. (1986). Although the present
work, where rotational effects are neglected, does not directly bear on the mesoscale
horizontal shear flows that have typically been the subject of field studies, the work
is relevant to smaller, submesoscale shear layers during their growth from very small
size. The dynamics of such shear layers and their contribution to horizontal and
vertical transport is of fundamental interest.

The problem of a shear layer that grows horizontally between two parallel, vertically
infinite fluid streams with a relative horizontal velocity, see figure 1, in a stratified
medium with constant buoyancy frequency, N , is investigated here using direct
numerical simulation (DNS). The flow instabilities associated with the shear layer
velocity profile (summarized later) are different from those in the wake or the jet.
A notable difference is that the shear layer has KH rollers having the same sign of
vorticity, unlike the opposite-signed vortices in a wake and in a jet. Both uniform shear
flow and channel flow are not susceptible to inviscid instabilities of the inflectional
mean profile studied here. As will be seen later, there are qualitative differences in the
effect of stratification shown here with respect to other flows with horizontal shear
studied previously: uniform shear, channel flow, wake and jet.

The evolution of a unstratified shear layer under a variety of conditions is
summarized below to provide a basis for comparison. A laminar shear layer is
subject to the following sequence of events: the fundamental KH instability develops
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into rollers and braids, the subharmonic pairing instability leads to pairings of
these rollers, and three-dimensional secondary instabilities tend to form streamwise
vorticity. Winant & Browand (1974) identified KH rollers and their pairing in a
low-Re laboratory shear layer. KH rollers develop spanwise variability (Browand &
Troutt 1980; Comte, Lesieur & Lamballais 1992) and spanwise non-uniform pairing
can occur (Chandrsuda et al. 1978; Collis et al. 1994; Comte et al. 1992). Brown &
Roshko (1974) found rollers, braids and pairing of rollers in their planar visualizations
of high-Re shear layers. The studies of Hernan & Jimenez (1982), Dimotakis & Brown
(1976), and Hussain (1983) show that tearing, partial pairing and amalgamation are
also important at high Re while Bell & Mehta (1990) do not observe distinct
core/braid structures at high Re. Rogers & Moser (1994) simulated a shear layer, that
starts from a turbulent boundary layer, up to a self-similar stage and, furthermore,
found that spanwise-coherent rollers were not distinct in this stage. It is thought that
at high Re, there is eventually a ‘mixing transition’, that is, development of strong
three-dimensionality from initially quasi-two-dimensional dynamics. An instability of
the elliptical vortex core, Pierrehumbert & Widnall (1982), and an instability of the
hyperbolic braid region, Klaassen & Peltier (1991), have been identified theoretically as
instabilities that could trigger this mixing transition. Three-dimensional instabilities
of the shear layer have been studied experimentally by Hussain (1983), Bernal &
Roshko (1986), Lasheras & Choi (1988), Nygaard & Glezer (1991) among others, and
numerically by Corcos & Lin (1984), Metcalfe et al. (1987), Moser & Rogers (1993),
among others.

Unlike horizontal shear layers, the effect of stratification on vertical shear layers
has been widely studied (Thorpe 1973; Koop & Browand 1979; Fernando 2003;
Strang & Fernando 2001; Smyth & Moum 2000a, b; Staquet 2000; Caulfield &
Peltier 2000; Lee & Caulfield 2001). Here, stratification opposes the overturning
motion of the primary KH billows. Caulfield & Peltier (2000) studied the linear
and nonlinear evolution of small disturbances and found the route to turbulence,
the so-called ‘mixing transition’, is substantially affected by buoyancy. The bulk
Richardson number, Rib, grows in the vertical shear layer and stratification eventually
dominates so that, eventually, the shear layer cannot grow further in the vertical
(cross-stream) direction and turbulence collapses.

A general feature of strongly stratified flows with horizontal Froude number
Frh = uh/Nlh � 1 is that layers of quasi-horizontal eddying motion called pancake
eddies occur as found in decaying turbulence in the laboratory (Fincham,
Maxworthy & Spedding 1996; Praud, Fincham & Sommeria 2005), in DNS studies
of initially isotropic turbulence (Metais & Herring 1989; Herring & Metais 1989;
Kimura & Herring 1996), and in the wake (Spedding 2002). The ‘pancakes’ are
significantly larger laterally than vertically and separated by thin zones with large
vertical shear. Numerical simulations of a model problem with flow initiated by
Taylor–Green vortices with Frh = O(1) by Riley & deBruynKops (2003) showed that,
although the horizontal scale of the vortices increased with time, the characteristic
vertical length decreased, and the vertical shear between the vortical structures
intensified to maintain the gradient Richardson numbe, Rig < 1, leading to small-scale
instabilities and overturning. A scaling analysis by these authors shows that the
likelihood of small-scale instabilities and turbulence increases with the Reynolds
number, Re. The analysis of Lilly (1983) had suggested the formation of vertically
decoupled layers of motion with strong interspersed vertical shear. Majda & Grote
(1997), analysing the flow equations in the limit of high stratification, found that
initial columns of vertical vorticity, when perturbed by a small vertical shear, evolve
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towards a set of truncated pancake-like structures. The linear instability analysis
of Billant & Chomaz (2000b) indicates a buoyancy-related instability, the zigzag
instability, that helps explain the slicing of a stratified counter-rotating vortex pair
that was observed experimentally by Billant & Chomaz (2000a). The vertical scale, lv ,
of the zigzag instability is such that Frv = uh/Nlv → O(1), instead of tending to zero.

A localized region of stratified turbulence is known to form intrusions at its
boundary with the surrounding quiescent fluid. These intrusions, driven by horizontal
gradients of density, consist of locally mixed fluid from the turbulent zone that
propagate outward into the stratified external region with the outflow being balanced
by the influx of fresh unmixed fluid toward the mixed layer. Intrusions at the
boundary of a vertically extensive region of stratified turbulence, created by oscillating
grids or rakes, have been investigated by Thorpe (1982), Ivey & Corcos (1982),
Browand, Guyomar & Yoon (1987), and Liu, Maxworthy & Spedding (1987). De-
Silva & Fernando (1998) show that the collapse of a single turbulent patch has
similar features. Intrusions by turbulence have also been observed in natural water
bodies (Caldwell, Brubaker & Neal 1978). In the present problem too, a vertically
extensive region of turbulence, forced by shear between the two horizontally flowing
streams, interacts with the surrounding stratified ambient. The potential formation of
intrusions and the effect of mean shear on the propagation of these intrusions is of
interest.

A stratified fluid can support internal gravity waves of frequency less than the
buoyancy frequency N excited by vortical fluctuations. Internal waves are radiated by
grid-generated turbulence during its deepening in a stratified fluid (Linden 1975; E &
Hopfinger 1986; Dohan & Sutherland 2003), by coherent structures in the stratified
far wake (Lin et al. 1992; Bonneton et al. 1993; Gourlay et al. 2001), by KH rollers
in a vertical shear layer (Sutherland, Caulfield & Peltier 1994; Sutherland & Linden
1998), and by density-driven intrusive gravity currents (Flynn & Sutherland (2004)
and references therein). In all the above flows, there is a region of turbulence and/or
coherent vortices in a vertically limited region that emits internal gravity waves that
travel into the adjacent stratified ambient, above or below the flow. In the present
problem, the region of flow is vertically infinite, but nevertheless there is the possibility
of turbulence and internal waves coexisting within the shear layer, as well as waves
that propagate away sideways into the surrounding stratified ambient.

The overall objective of the paper is to investigate stratification effects in a
horizontal-shear layer, a flow in which instabilities are continuously generated by
the inflectional mean velocity profile, the Reynolds number keeps increasing so
that nonlinearity remains important, but at the same time the horizontal Froude
number (Richardson number) keeps decreasing (increasing) so that stratification is
also important. The sequence of events characterizing transition from infinitesimal
perturbations to turbulence, and the effect of stratification on a shear layer which
already has broadband, finite-amplitude perturbations are both of interest. Only the
second problem is investigated here with the following objectives. First, the structural
organization of the vorticity field will be examined, comparisons to the unstratified
case will be made, and the coupling between buoyancy and vorticity will be identified.
Second, the vertical structure of the velocity and buoyancy fields will be examined
for layering, a mechanism by which horizontal eddying motions have localized sites
of strong dissipation and vertical mass transport. This mechanism could be operative
in environmental horizontal shear layers. Third, the simulations will be examined for
intrusions and internal wave emission which are modes of interaction of the shear
layer with its ambient, made possible because of stratification.
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Figure 1. Schematic of a temporally evolving horizontal shear flow with vertical
stratification.

The paper is organized as follows. Section 2 describes the problem formulation.
Section 3 discusses the evolution of the mean flow. The evolution of the vorticity and
the density fields are described in § 4 and § 5, respectively. Section 6 describes the
locations of large dissipation and mixing in this flow and discusses the overall mixing
energetics. The work is summarized in § 7.

2. Formulation
A schematic of the model problem studied is shown in figure 1. A shear layer,

subject to an imposed vertical stratification dρ/dz, develops between two streams
with equal and opposite velocity. The velocity difference between the streams is
�U . The cross-stream thickness of the shear layer, measured by the vorticity
thickness δω = �U (du/dy)max , increases with increasing time. The computational
domain consists of a rectangular box with lengths Lx , Ly and Lz in the x (streamwise),
y (cross-stream) and z (vertical, spanwise) directions, respectively. x, y, z and x1, x2, x3

are used interchangeably for the axes.
The non-dimensionalized, conservative form of the Navier–Stokes equations with

the Boussinesq approximation,

∂uk

∂xk

= 0, (2.1)
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are solved numerically. Velocity, length and time are non-dimensionalized with
reference values �U , δω,0 (the initial value of δω) and δω,0/�U , respectively. The
density fluctuation ρ ′ in momentum conservation (2.2), is non-dimensionalized using
�ρ = (dρ/dz)δω,0. Here, δω,0, has been used as the vertical length scale for convenience;
it will be seen later that buoyancy determines the vertical length scale when the
stratification is strong. The pressure deviation, p, with respect to the mean hydrostatic
pressure is non-dimensionalized by ρ0(�U )2. The quantities Re0 and Rib,0 are the
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initial values of Reynolds number,

Re =
�Uδω

ν
, (2.4)

and bulk Richardson number,

Rib = − g

ρo

dρ

dz

δ2
ω

�U 2
=

N2δ2
ω

�U 2
. (2.5)

Rib is defined using horizontal shear and vertical stratification, an analogue to that
in vertically sheared and stratified flow, and can be interpreted as a ratio of the
buoyancy forcing to the shear forcing, or as the (squared) ratio of two time scales
imposed on the fluctuations.

The total density ρ, consisting of a linearly varying mean part ρ(z) (see figure 1)
and a fluctuating part ρ ′(x, y, z, t), can be written as

ρ = ρ(z) + ρ ′(x, y, z, t) . (2.6)

The value of stratification, dρ/dz, is chosen to prescribe the initial Rib, and initially
ρ ′(x, y, z, t)= 0.

The mean velocity field is initialized as follows:

u1(y) =
�U

2
tanh

(
− y

2δθ,0

)
, u2 = 0, u3 = 0, (2.7)

where δθ,0 is the initial value of momentum thickness defined by

δθ =

∫ ymax

ymin

(
1

4
−

(
u1(y)

�u

)2)
dy. (2.8)

Here ymin and ymax denote the extent of the computational domain in the y-direction.
Note that δθ,0 = δω,0/4. Broadband fluctuations are used to accelerate transition to
turbulence with the following spectrum:

E(k) = (k/k0)
4exp(−2(k/k0)

2). (2.9)

The energy spectrum peaks at k0, corresponding to the wavelength 1.684δω,0, which
is significantly smaller than the most amplified KH mode, 7.23δω,0. The initial

turbulence energy, q2 = u′
iu

′
i = 0.0288�U 2, is large enough to achieve quick transition

to turbulence, and also has an exponential decay from the centreline to the edges
of the initial shear layer. Different initial conditions are discussed in the Appendix
to show that the late-time statistical evolution and dynamics are not significantly
changed. Periodic boundary conditions are used in the streamwise x-direction and
vertical z-direction for the velocity and pressure fields and the fluctuating part of the
density field, ρ ′. The cross-stream y-direction boundary conditions are: p′ =0, ρ ′ =0,
and ∂ui/∂y = 0.

The governing equations (2.1)–(2.3), are discretized on staggered grids, with the
velocity variables stored at the cell faces, and pressure and density stored at the cell
centres. Spatial derivatives are discretized using second-order central differencing. A
low-storage third-order Runge–Kutta scheme is used for time integration. Multigrid
acceleration with V cycle is used for solving the pressure Poisson equation.
Smoothing of the pressure field in the multigrid procedure after the prolongation
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Case Rib,0 tf Rib,f Ref Reλ,f Frh,f (w/uh)f

A0 0.0 65 0.0 4309 70.51 - 0.718
A1 0.056 82 1.627 3652 132.34 0.203 0.310
A2 0.113 82 3.457 3763 189.33 0.159 0.231
A3 0.283 81.2 8.920 3823 266.4 0.112 0.140
A4 0.567 81.3 21.18 4166 314.42 0.0761 0.0867
A5 1.132 79.8 46.00 4341 281.95 0.0530 0.0548

Table 1. Description of the different simulation cases and some related parameters and bulk
quantities. Subscripts 0 and f are used to denote the initial and final values. tf denotes the
final non-dimensionalized time until which the flow has been simulated, while Rib,f , Ref ,
Reλ,f , Frh,f , and (w/uh)f are the final values of bulk Richardson number, Reynolds number,
microscale Reynolds number, horizontal Froude number, and ratio of vertical to horizontal
r.m.s. velocity. The definition of Reλ = Uλ/ν is a factor of

√
3 smaller than the alternative that

uses q =
√

2K instead of U.

and interpolation operations is done using the Gauss–Seidel method. Successive over-
relaxation (SOR) with Chebychev acceleration is used as the pressure solver on the
fine grid. The advection CFL number equal to 0.5 controls the time step, while the
diffusion number is 0.05. Unstratified results obtained here agree well with those of
Rogers & Moser (1994) and the low-Mach-number simulations of Pantano & Sarkar
(2002) which, in turn, have been validated against experimental data on turbulence
statistics and shear layer growth rate.

The different cases simulated and some of the related initial and final quantities are
given in table 1. For all the cases, the size of the computational box is [Lx × Ly × Lz] =
107.5 × 64.5 × 32.25, length being non-dimensionalized with the initial vorticity
thickness. The number of nodes in the x-, y- and z-directions, Nx × Ny × Nz is
640 × 384 × 192 (approximately 47 million grid points) with a uniform grid spacing,
�x = �y = �z. The adequacy of the chosen grid resolution is demonstrated in the
Appendix through spectra and comparison with an additional simulation having
half the vertical grid spacing. The same initial velocity field is used in all the
simulations. The important parameters are the initial Reynolds number Re0, initial
bulk Richardson number Rib,0 and Prandtl number Pr . The values of Re0 = 681 and
Pr = 1 are kept constant between cases. The value of N2 is varied keeping �U and
δω,0 constant, and thus the value of Rib,0 also varies.

The shear layer spreads in the cross-stream y-direction and with time, t . The flow
statistics are also functions of y and t . Quantities such as Re and Rib, defined
using integrated or maximum (minimum) values, change only with time and serve as
indicators of the overall state of the flow. The final Reynolds number, Ref , given in
table 1 along with the broadband initial fluctuations is large enough for turbulent
flow (Rogers & Moser 1994). The final Richardson number, Rib,f , becomes quite large
and the corresponding horizontal Froude number, Frh = uh/Nδω, becomes small. The
vertical velocity becomes significantly smaller than the horizontal one as shown by
the ratio of w and uh =

√
u2 + v2 in table 1. The microscale Reynolds number is

defined by

Reλ =
Uλ

ν
= K

√
20

3νε
. (2.10)

Here, U =
√

2K/3 denotes a characteristic fluctuation velocity, defined using K , the
turbulent kinetic energy. λ denotes the Taylor microscale defined by ε = 15νU2/λ2,
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Figure 2. (a) Momentum thickness plotted as a function of time. (b) Variation of the bulk
Richardson number as a function of normalized time, Nt∗.

with ε = 2νs ′
ij s

′
ij denoting the turbulent dissipation rate. The large value of final Reλ

in the stratified cases is due to the decreased dissipation, ε.

3. Evolution of the mean flow
The velocity profile thickens in the cross-stream direction with increasing time. The

evolution of the momentum thickness in figure 2(a) shows that the unstratified shear
layer grows almost linearly with time. For the stratified cases, the initial growth of
δθ is smaller, however cases A3–A5 with large N show an increased growth rate at
later times when, as will be seen in § 4, the KH rollers are more organized. Since
δθ (t) increases and �U is fixed, the mean shear decreases. Correspondingly, the bulk
Richardson number, Rib(t), grows, reaching greater values for larger initial Rib. At late
time δθ ∝ t and, since δω ∝ δθ , equation (2.5) implies quadratic growth, Rib ∝ (Nt)2.
The Rib(Nt) curves in figure 2(b) are similar at late time, and Rib > 0.5 suggests the
eventual dominance of stratification in all cases.

4. Structure of the vorticity field
Differences in the vorticity evolution owing to stratification are illustrated by

comparing the unstratified case A0, moderately stratified case A2, and strongly
stratified case A5. Slices of the vorticity field at a central horizontal plane (z = 12.7),
e.g. figure 3(a), and a central vertical plane (y = 25.7), e.g. figure 3(b), are shown. The
x and z locations are in the units of the axes in the visualizations; in these units,
δω,0 = 0.8. The magnitude of the vertical (primary) vorticity, |ωz|, is used to show

the overall structure of the flow. The horizontal component, ωh =
√

ωx
2 + ωy

2, is the
secondary vorticity associated with three-dimensional instabilities and turbulence. The

organization of vertical shear,
√

(∂u/∂z)2 + (∂v/∂z)2, is similar to that of ωh and will
not be discussed separately.

4.1. Unstratified case A0

In the unstratified case, the organization of vorticity is weak. The vortex structures at
late time are quite complex and different from those in the transition to turbulence
from infinitesimally small disturbances. Although the horizontal slice (z = constant) in
figure 3(a) shows evidence of discrete lumps of vertical vorticity which grow in time,
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Figure 3. Unstratified case A0: (a) vertical vorticity, |ωz|, at t =64.8 on a horizontal cut at
z = 12.7, (b) |ωz| at t =64.8 on a vertical cut at y = 25.7. The grey-scale scheme here and
in following figures is such that black corresponds to the minimum value and white to the
maximum.

the core and braid zones are not distinct. The vertical slice, figure 3(b), indicates that ωz

is not coherent over significant vertical (spanwise) distances. The horizontal vorticity,
ωh (not plotted), exhibits no distinct spatial organization. Peak ωh is somewhat larger
than peak ωz indicating strong three-dimensionality that progressively increases with
increasing Re. The weak organization of the vorticity field observed here in case A0
is consistent with the DNS results of Rogers & Moser (1994) for their case TBL that
started with a turbulent boundary layer with peak q/�U = 7.5%. Additional strong
two-dimensional forcing, approximately ten times the three-dimensional fluctuation
energy, was found necessary by Rogers & Moser (1994) to maintain spanwise-coherent
rollers at late time.

4.2. Moderate initial stratification, case A2 with Rib,0 = 0.113

The vorticity field in the intermediately stratified case A2 shows significantly more
organization than case A0. From the incoherent initial conditons, KH rollers and
interspersed braids appear as seen in figure 4(b), becoming more distinct in the later
panels. The cores thicken by amalgamation and the braid regions thin by exuding
vorticity until t � 52 after which dynamics similar to the transitional low-Re shear
layer studied by Winant & Browand (1974) is seen, although the Re here is larger.
For example, co-rotation of vortex cores and their pairing is evident later in time as
in the evolution of the region around A from t = 51.7 to t =82. Accompanying this
pairing event is the stretching of the vertical vorticity in the vicinity of B that results
in a thin braid at t =82. More complex vortex interactions can also be seen. The
region between C and E at t = 51.7 has about six emerging structures which interact
to finally give rise to three non-equispaced vortex cores. The vorticity lump at D
appears to be stretched and torn by its interaction with the neighbouring vorticity,
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Figure 4. Vertical vorticity magnitude in case A2 on a horizontal central plane, z = 12.7, at
different times. From top to bottom, t = 35.4, 51.7, 67.3, and 82. The corresponding values of
Richardson number are Rib =0.68, 1.32, 2.25 and 3.46. Multiply t by 0.224 to obtain Nt∗.

eventually becoming a thin distinct braid by t = 82. The vorticity in the vicinity of C
and E amalgamates to form thick vortex cores at t = 82 without showing the clear
co-rotation and pairing seen in the vicinity of point A.

Columnar cores of |ωz| emerge from the initial broadband fluctuations, a remarkable
difference with respect to unstratified case A0. The formation of the vortex columns
and their evolution is shown in figure 5. The region between x =70 and x = 85 in
figure 5(a, b) shows two vortex cores that approach and overlap in the central region,
somewhat similar to the so-called helical pairing observed by Chandrsuda et al. (1978)
and Comte et al. (1992). The central region between x = 40 and x =60 shows the
emergence of three vortex cores at t = 51.7. At t = 64.8, the left member (centred at
x = 40) of this trio moves toward the middle one (centred at x = 48) in a spanwise
non-uniform fashion and, similarly, the right member is also drawn in. At t = 82,
the three members have paired to result in a ‘branched’ vortex. The central portion
(10 <z < 15 and 45 <x < 55) forms a single vortex core with its right and left sides
rotated out of the plane, while above and below are two branches. The vortex lines in
the left, bottom branch pass through the central portion and connect to the left, top
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Figure 5. Vertical vorticity magnitude in case A2 on a vertical central plane, y = 25.7, at
different times. From top to bottom, t = 35.4, 51.7, 67.3 and 82, and correspondingly, Rib = 0.68,
1.32, 2.25 and 3.46.

branch with a similar connection between the right branches. At late time, figure 5(d),
the columnar cores tend to align parallel to the z-axis, having small inclination with
the vertical. The column around point A extends throughout the vertical extent of
the domain while the column at point B is ‘truncated’ to form a ‘dislocation’ in ωz.
The dislocations will be more distinct in case A5, discussed later.

Although staggered rollers have also been seen to form in unstratified shear layers
due to local spanwise pairings triggered by low-amplitude disturbances, there is a
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Figure 6. Case A2, three-dimensional isosurface of (a) the |ωz| field and (b) the ωh field at
time t = 82. Isosurface value = 0.4.

significant difference with respect to the local pairings observed here. In the unstratified
shear layer, Nygaard & Glezer (1994) and Collis et al. (1994) study local pairing
triggered by a controlled local phase shift of the spanwise vortices in the initial
conditions and find the emergence of a ‘diamond’ vortex lattice. The detailed numerical
simulations by Collis et al. (1994) reveal that, after the vortex cores approach each
other locally, there is a mutually repulsive velocity field induced by the convoluted
core and rib vortices in that region that tends to decouple the cores so that the actual
zone of vortex pairing is relatively small compared to the total spanwise extent of the
rollers. In the stratified case, the pairing zone has smaller ωh which allows the pairing
to proceed to completion and there is no evidence of decoupling of the paired rollers
with time. Furthermore, the regions away from the local pairing are quasi-vertical
instead of being strongly inclined and, depending on the details of the later-time
evolution, can interact with other structures.

The horizontal vorticity, ωh, has also been examined and its peak value found to
mainly occur in overturning braid regions between the columnar cores of ωz. It is
known that the braid region between adjacent KH rollers, when subject to the strain
field induced by the rollers, is strongly susceptible to three-dimensional instabilities
(Pierrehumbert & Widnall 1982; Moser & Rogers 1993; Lasheras, Cho & Maxworthy
1986; Lasheras & Choi 1988). In the case of discrete, deterministic initial conditions,
the braid vorticity is initially organized, e.g. streamwise counter-rotating rib vortices
and hairpins have been observed; these later break down into a complex three-
dimensional vortical field. In the present case, chaos-to-order, the rollers emerge from
an initially complex disorganized vorticity field and distinct streamwise-coherent rib
vortices are not observed. The ωh field has thin ‘horizontal’ striations that become
more pronounced with time.

That |ωz| organizes into interacting columnar vortex cores and ωh into striations
is made more clear by a three-dimensional perspective. Figure 6(a, b) shows an
isosurface of |ωz| and of ωh in the region between x =32 and 66, at t = 82. The
horizontal meandering of the vortex cores is clearly evident in figure 6(a). The lower
part of the structure at x = 42 actually consists of two merging vortex cores. The
spanwise coherence of this structure is truncated near z = 15, where ωz branches
out to locally merge with adjacent columns. A single column of ωz forms again
near x = 45, above z = 17 and continues to the top of the domain, which is in turn
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Figure 7. Case A5, spanwise vorticity magnitude, central z-plane, t = 19.6, and t = 79.8.

connected to the bottom of the domain through periodicity. The column in the
bottom region of figure 6(a), near x = 55, meanders to the left near z =15 and merges
locally with the adjacent roller. This vortex column is also seen to interact locally
with the vortex column to its right. Thus, a staggered lattice of spanwise vorticity
columns tends to form. The horizontal vorticity in figure 6(b) is organized into thin,
horizontally aligned strips. Some of the ωh structures are located in the rollers while
most of them are wound around the skeletal framework formed by the ωz rollers.

To summarize, the DNS shows that the vorticity field in case A2 is much more
organized relative to case A0. This is a consequence of horizontal vorticity being
suppressed by stratification which resists the induced overturning vertical motion.
As discussed in the introduction, secondary vorticity, the component ωh in this flow,
has been found to be crucial to the ‘mixing transition’ of the unstratified case.
The weakening of ωh causes the reverse phenomenon whereby the fundamental
KH instability regains importance later in time. The emerging cores of ωz are
columnar, prevented by stratification from having large-scale deviations from the
vertical observed in the unstratified case (Lasheras & Choi 1988; Moser & Rogers
1993) since that would result in significant vertical transport. The columns of ωz form
a staggered lattice, a feature that is more distinct in case A5 as discussed below in
§ 4.3.

4.3. High stratification, case A5 with Rib,0 = 1.132

The coherent structures of ωz are visually sharper in case A5 relative to case A2 as is
readily seen by comparing figure 7(b) with figure 4(d) at similar t . Another difference
is that distinct core and braid structures are formed earlier in case A5 than in case A2
and are therefore thinner. At t = 19.6, about 14 rollers can be identified which agrees
well with the domain size in x containing 14 to 15 of the most unstable wavelength
of the KH instability. When N is used for normalization of dimensional time, t∗,
coherent vortex cores appear at similar time, 16 < Nt∗ < 20 in cases A2–A5, and
the corresponding stratification level is 1.25 <Rib < 2.25. The paired KH rollers, for
example at x =30 and x = 50 in figure 7(b), show the strong co-rotation characteristic
of quasi-two-dimensional vortex dynamics, a feature that was not prominent in case
A2.
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Figure 8. Case A5, spanwise vorticity magnitude, |ωz|, central y-plane. t = 36.5, 51.5, 66.1,
79.8. t and Nt∗ have the same numerical values in this case. Rib = 2.87, 8.27, 17.24, 33.35,
and 46.

Similar to case A2, there is formation of columnar cores in case A5 as shown
by the vertical cut of |ωz|, figure 8. These cores become distinct at smaller t but
similar buoyancy time, 16 < Nt∗ < 20. Initially, long continuous structures, inclined to
the vertical, are formed, e.g. AA in figure 8(a). That buoyancy tilts segments of the
vortical cores will be shown later in § 5. Local interactions of these tilted segments
with their neighbours modifies the initially continuous vortex core to form a set of
locally vertical structures. Figure 8(b) shows that the previously continuous structure
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Figure 9. Case A5, three-dimensional structure of (a) the |ωz| field and (b) the ωh field at
time t = 79.8. Isosurface value = 0.4.

AA has evolved to form a set of stubby vertical structures by relative horizontal
sliding, e.g. at B. Short vortex structures, e.g. C and D, collapse with increasing time.
Eventually, the vorticity field develops thin dislocations, marked in figure 8(c).

Similar to case A2, the horizontal vorticity, ωh, is reduced by stratification and has
a striated appearance. However, there is an important difference at the end of the
simulations: peak ωh occurs at the braids in case A2 and progressively decreases with
time, while peak ωh in case A5 occurs at the dislocations and increases with time.
This difference could be because the final Nt∗ = 25.2 is not sufficiently large in case
A2; in case A5, the final value was Nt∗ = 79.8.

Thus, the vorticity at late time in case A5 organizes into a dislocated lattice of
quasi-vertical cores of ωz with ωh concentrated in thin sheets at the dislocations. The
visualization of an isosurface of |ωz| and of ωh between x = 38 and 72 in figure 9
illustrates this three-dimensional topology of the coherent structures. Comparison
with a similar visualization, figure 6, shows the following differences in case A5 with
respect to A2: the vortex cores are smoother, braid vortex tubes of ωh are absent, and
dislocations of vortex cores with associated sheets of ωh are present. We reiterate that
the rectangular lattice of vortex cores observed in cases A5 and A2 is different from
lattices observed in the transitional stage of unstratified shear layers, the hexagonal
lattice of Comte et al. (1992), and the diamond lattice of Nygaard & Glezer (1994)
and Collis et al. (1994).

5. Structure of the density field
The structural organization of the density field and its interaction with the organized

vorticity field are described in this section. Case A5, where buoyancy effects are
prominent from early on, is discussed in detail.

5.1. Core structures

The density field is organized and strongly coupled to the organized vorticity field
as illustrated by figure 10(a–d). After an initial transient when random small-scale
density fluctuations form, significant ρ ′ occurs mainly within the cores, for example, A
and B in figure 10(a, b), as well as C1, D1, and E1 of figure 10(b). Vortex cores with the
following types of density organization are seen: (i) inclined structures with heavier
(red) and lighter (blue) fluid being side-by-side, and (ii) vertical structures with lighter
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fluid directly over heavier fluid. A and B in figure 10(a) are examples of inclined
vortex cores, tilted to the right and left, respectively, with high-ρ ′ below low-ρ ′ fluid
in both. The angle of inclination generally increases with time bringing the lighter
fluid above the heavier fluid. K1–K3 and D2–D3 are examples of vertical cores with
a stable arrangement of heavier under lighter fluid. Figure 11 is an expanded view
of a subsection of figure 10(c). That the structure with negative ρ ′ (blue) overlying
positive ρ ′ (red) is associated with a vortex core is very clear in D2. The superposed
isopycnals show that the lighter fluid in D2 is associated with a downward dip of the
isopycnals and the heavier fluid is associated with an upward bulge of the isopycnals.
Such convergence of isopycnals towards the centre of a vortical structure is similar
to that observed in pancake vortices by Beckers et al. (2001) and Godoy-Diana &
Chomaz (2003).

Inclined vortex cores are explained with a schematic, figure 12(a), showing adjacent
heavy and light fluid, an unstable density contrast, that tilts the vortex core to the
right owing to baroclinic torque. The isopycnals on the right of the vortex core
are displaced upward to give ρ ′ > 0; similarly ρ ′ < 0 at the left is due to downward
isopycnal displacement. Careful comparison between the density and the vorticity in
case A5 shows that the tilting of vortex cores is almost always towards the direction
of the heavy fluid.

Quasi-vertical, finite-size vortex cores with negative ρ ′ overlying positive ρ ′, observed
in the DNS, can be explained using the idealization of figure 12(b), which shows an
isolated vortex core of radius R and height H with axisymmetric azimuthal velocity
vθ (r, z), and vr = vz = 0. Under these assumptions, the radial momentum equation
simplifies to a centrifugal balance,

∂p

∂r
= ρ0

vθ
2

r
. (5.1)

Integrating radially shows that the pressure external to the vortex, p0, is larger than at
the centre A. The vertical velocity is small at late time and neglecting its contribution
to the vertical momentum equation gives

∂p

∂z
= −ρ ′g, (5.2)

where p is the deviation from the hydrostatic pressure. The result of (5.1) that p0 > pA

is one that can be satisfied by the hydrostatic balance (5.2), if ρ ′ < 0 in the upper half
of the vortex, i.e. the isopycnal dips down from above to bring lighter fluid from the
stratified ambient. A similar integration vertically down from the centre shows ρ ′ > 0
in the lower half of the vortex. Thus, the low pressure at the vortex centre leads to
isopycnal convergence.

The lattice of dislocated vortex cores, discussed in § 4.3, can now be explained
in view of the observed organization of the density field. During vortex merger,
if fluid of different density is brought together, the paired structure tilts sideways
owing to buoyancy. The vorticity field soon consists of quasi-vertical vortex cores, see
figure 12(b), connected by tilted vortical structures, see figure 12(a); for example, C1,
D1 and E1 in figure 10(b) are connected by inclined vortices G1 and H1. The tilted
structures are gravitationally unstable and collapse later in time to form dislocations.
Occasionally, the vertical vortex cores can also collapse, for instance, during the
evolution of vortex K in figure 10(b, c), before it merges with the adjacent tilted
vortex structure at its left in figure 10(d).
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density perturbations, (b) convergence of isopycnals toward the central low-pressure zone of a
vertical vortex.

The horizontal dynamics of the vortex cores is made clear through the successive
panels of figure 13. Most of the large-amplitude (red and dark blue) density variation
is in the vortex cores. The vertical vorticity present at early time (not shown) in the
braid region diminishes later and so does the density variation there. Interestingly,
there is fine-scale density variation of smaller amplitude (yellow and light blue)
in the erstwhile braid regions that appear to travel outward and to also rotate
clockwise owing to the shear. This is suggestive of internal wave radiation. Merging
of vortex cores is seen. The merging in L1–L3 is reminiscent of pairing seen in
two-dimensional simulations of the unstratified shear layer. However, the merger in
I1–I3 that brings together fluid with a large density contrast is qualitatively different
owing to buoyancy. The vorticity is less compact relative to L and the heavy/light
fluid also shows significant lateral spread. Zone I corresponds to the upper and lower
ends of two adjacent truncated vertical vortices whose buoyancy contrast cannot be
supported during vortex merger so that the fluid moves out laterally with heavy fluid
sliding under light. The later-time snapshots also show regions of partially mixed
fluid (yellow and light blue) that spread out from the vortex cores. These regions,
with less fine-scale structure than the gravity waves radiating from the stretched braid
vorticity, are associated with the intrusions discussed below in § 5.4.

The density structure of case A2 was also examined. It was found that, similar to
case A5, segregated density perturbations occur and tilt vortex cores. Dislocations
of the cores are also present and associated with strong distortions of the vortex
lines and significant deviations of the isopycnals from their respective mean positions.
More small-scale velocity and density fluctuations are present in case A2 relative to
A5 because Nt∗ and Rib are not sufficiently large. Unlike case A5, there is significant
ωh in the braid regions of case A2 which generates ρ ′. Magnified visualizations of the
isopycnals (not shown) reveal some small-scale overturning regions, predominantly in
the braid zones, in contrast to case A5 which, at late time, exhibits no overturning of
isopycnals.

5.2. Length scales of the vortex cores

Case A5 was simulated up to Nt∗ = 149.1 to investigate the behaviour of length
scales of the coherent vortices. Owing to the statistical jitter in the position of the
vortices, the velocity and density spectra do not show distinct peaks at a specific scales
and, instead, visualizations of the vorticity are used to characterize the length scales.
Comparison of figure 14(a) with a snapshot at earlier time, figure 7(b), shows that the
horizontal scale of the vortex cores increases owing to pairing and, correspondingly,
the number of discrete vortex cores decreases. At Nt∗ =149.1, there is a central
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(b) vertical cut, y =25.7.

vortex core and two pairs of vortex cores at each side of the computational domain.
A central vertical cut, figure 14(b), shows a – by now familiar – dislocated lattice
of quasi-vertical vortex cores. The maximum number of vortex cores in a vertical
transect is about 5, the same number found earlier at Nt∗ = 79.8. Inspection of a
movie of the evolution of ωz shows that during merger of neighbouring (but vertically
offset) sections of vortex cores, the vertical length scale of the vortex core may increase
temporarily but, since fluid of different density is brought together, buoyancy effects
described in the previous section operate to limit the vertical length scale. Thus, the
overall horizontal size of the vortex cores increases with time while the vertical size
does not, so that the initial columnar appearance of the vortices progresses towards
a pancake shape.

The combination of centrifugal and hydrostatic balance leading to (5.1)–(5.2) is
helpful to identify the characteristic vertical scale. Since the azimuthal velocity of the
vortices is proportional to the imposed velocity difference, �U (5.1 ) simplifies to

p0 − pA ∝ ρ0�U 2. (5.3)

The density fluctuation is associated with the vertical displacement of the external
isopycnal, assumed to be proportional to the local vertical coordinate, so that
integration of (5.2) from the centre to the upper edge of the vortex leads to

p0 − pA = −
∫

0

H/2

ρ ′g dz ∝ −
∫

0

H/2 dρ̄

dz
zg dz = −g

dρ̄

dz

H 2

8
, (5.4)
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where H is the height of the vortex. After equating the right-hand sides of (5.3) and
(5.4), the following expression for H is obtained:

H = C1

�U

N
, (5.5)

where C1 is a coefficient. Thus, the vertical extent of the vortex core, related to the
buoyancy length �U/N , becomes invariant with time if the coefficient, C1, approaches
a constant value. The DNS data of case A5 are examined and the scaling law (5.5),
is found to hold at long time, from Nt∗ =60 until the end of the simulations at
Nt∗ =150. The data of case A5 indicate H � 5 while �U/N =0.8 giving the final
expression for the vortex core height,

H � 6
�U

N
. (5.6)

5.3. Vorticity transport equation

The vorticity transport equation is examined using DNS and the importance of the
baroclinic term is quantitatively demonstrated. The vorticity transport equation is

∂ωi

∂t
= −uk

∂ωi

∂xk

+ ωk

∂ui

∂xk

+ ν
∂

∂xk

∂ωi

∂xk

+ εi3k

1

ρ0

g
∂ρ

∂xk

, (5.7)

In (5.7), −uk∂ωi/∂xk is the vorticity advection term, ωk∂ui/∂xk denotes vortex
stretching/tilting, ν∂2ωi/∂x2

k denotes vorticity diffusion, and εi3k (g/ρ0) ∂ρ/∂xk is the
baroclinic term (often called baroclinic torque) which directly couples the buoyancy
and vorticity fields.

Terms in the evolution of a horizontal vorticity component, ωy , are discussed first.
The baroclinic term, (1/ρ0) g∂ρ/∂x, in a vertical central cut is visualized in figure 15(a).
If positive, the baroclinic term results in clockwise motion and vice versa. Comparison
with figure 10(c) shows that continuous positive (negative) streaks of (1/ρ0) g∂ρ/∂x

are associated with high-ρ ′ fluid situated to the right (left) of low-ρ ′ fluid; A, B and
C in figure 15(a) are incipient dislocations while D, E and F are inclined vortex
cores. The baroclinic term is always positive in regions where ωz is tilted rightward
and negative in structures tilted toward the left, further corroborating the statement
in § 4 that density perturbations act to tilt sections of vortex cores in case A5. The
minimum and maximum values of (1/ρ0) g∂ρ/∂x at the centre y-plane in code units
are −0.537 and 0.535, respectively, with the variance being 0.089. The vortex tilting
term, ωz∂v/∂z, that produces ωy by tilting of ωz columns, is shown in figure 15(b). It
is observed that vortex cores tilted to the right generate negative ωz∂v/∂z, as shown
at location A, while cores tilted leftward generate positive ωz∂v/∂z as at B. The
observed sign of ωzdw/dz thus implies that, in the inclined vortex core, the vortex
tilt term resists the baroclinic torque, and can be explained as follows. The primary
vortex cores in the shear layer have a clockwise spin (positive v on the left side and
negative v on the right side), see axes in figure 1. Any tilt of the vortex core axis
from vertical to its right (left) would then create a positive (negative) ∂v/∂z. Since the
clockwise spin implies that ωz is negative, the vortex tilt term, ωz∂v/∂z, is negative
(positive) in a vortex core tilted to the right (left). The minimum and maximum values
of ωz∂v/∂z are −0.502 and 0.597, respectively, with the variance being 0.0687. The
vortex tilting terms are particularly intense in the dislocation zones (C, D) where the
vertical shear is large. The baroclinic term is clearly of similar order as vortex tilting,
thereby underscoring the importance of buoyancy to vorticity dynamics in this flow.
Inspection of the ωy equation at various times indicates that baroclinicity triggers the
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initial inclination of vortex cores. The viscous diffusion term (not shown) peaks at
the dislocations and edges of the vortex cores, becoming comparable to the vortex
tilt and baroclinic terms. The balance in the equation for ωx is similar to that for ωy

and is not discussed further.
Assessment of the transport equation for ωz shows that advection by horizontal

velocity is the largest term; the minimum and maximum values are −0.505 and 0.76
respectively, with the r.m.s. being 0.0476. Figure 15(c) shows ωz∂w/∂z, the vertical
stretching/compression of ωz. Negative ωz∂w/∂z that results from stretching the
vortex cores (containing mainly negative ωz) strengthens them, while positive ωz∂w/∂z

resulting from compression weakens them. Large positive ωz∂w/∂z is observed at
dislocation zones, e.g. A, B, C, where the vertical vorticity collapses. Regions of both
positive and negative ωz∂w/∂z are observed in the truncated core regions associated
with local stretching and collapse of vorticity. The minimum and maximum values
of ωz∂w/∂z are −0.248 and 0.1532, with the r.m.s. being 0.0186. Figure 15(d) shows
diffusion of ωz which is observed to be mainly concentrated in the dislocation zones,
e.g. A, B, C, and the edges of the vortex cores, e.g. D, E. The intensity of ωz diffusion
is comparable to vortex stretching, with minimum and maximum values at the central
y-plane of −0.056 and 0.104, and r.m.s. value of 0.0058.

Evaluation of the vorticity transport equation shows that, at the thin dislocations,
the two dominant terms are vortex stretch/tilt and diffusion. In the case of ωz, equating
these two terms, namely ωz∂w/∂z and ν∂2ωz/∂z2, gives the following estimate of the
thickness, ld , of the dislocations: ld ∝

√
ν/a where a is the characteristic compressive

strain rate. A similar consideration of the balance of ωx or ωy gives ld ∝
√

ν/s

where s is the characteristic vertical shear. We find that the r.m.s. vertical shear (or
strain) in the stratified cases is proportional to N giving ld ∝

√
ν/N . The quantity√

ν/N is the so-called primitive scale that appears in stratified turbulence literature,
for example, Gibson (1980) and Barry et al. (2001). In energetic thermally stratified
turbulence, Barry et al. (2001) find that the r.m.s. turbulence length scale, T ′2/dT̄ /dz,
is approximately 20

√
ν/N . Examination of the DNS data shows that approximately

4 points of the computational grid span a dislocation vertically; thus, the dislocation
thickness is

ld � 15

√
ν

N
. (5.8)

5.4. Edge dynamics

The edges of the shear layer, devoid of strong ωz, cannot sustain regions with density
fluctuations which then collapse. Downward moving tongues of fluid with higher
density often encounter upward moving low-density tongues and these combined
structures propagate laterally as intrusions. Intrusions begin to form at Nt � 10,
close to the value Nt = 9.6 ± 2.5 reported by Browand et al. (1987). The underlying
mechanism is shown by the schematic, figure 16, inspired by previous investigations
of the collapse of stratified turbulent fronts by Browand et al. (1987), Liu et al. (1987),
Thorpe (1982), and Ivey & Corcos (1982). Squeezing of fluid in the vertical direction
accompanied by its horizontal spread is also observed in a collapsing isolated region
of mixed fluid, as discussed by De-Silva & Fernando (1998). In the intrusion IJK of
figure 16, higher density fluid flows down from the upper part IJ, while the lower
density fluid moves up in the lower part KJ to create the entire structure IJK which
intrudes into the ambient fluid and moves away from the shear layer. The outflow of
the mixed fluid from the shear layer is balanced by external fluid entering the shear
layer in thin zones with significant v. The density variation along line BB in figure 16 is
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Figure 16. Schematic of the intrusion process at the central x-plane.

shown at the right of the schematic. The presence of positive ρ ′ over negative ρ ′ at the
intrusions decreases the density gradient locally while, in order to maintain the overall
imposed density gradient, the density gradient in the inter-intrusion zones increases.
Although the density gradient decreases at the intrusions, the total density profile
remains statically stable precluding the generation of Rayleigh–Taylor instabilities.

The intrusions are relatively clear at late time. Some of the tips of the intrusions,
containing heavier (than ambient) fluid over lighter fluid, have been marked as points
A, B and C in figure 17. Generally, the positive-ρ ′ tongues are observed to have
a downward inclination while the corresponding negative-ρ ′ fluid has an upward
inclination, in accord with the schematic, figure 16. The spread of the intrusions in
the cross-stream direction is shown by tracking the nose of an intrusion marked
by AA1 in the panels of figure 17. (Due to the periodic boundary condition, the
positive-ρ ′ zone at A1 has its counterpart of negative ρ ′ near the top of the flow
domain at A.) At time t = 65.95, the nose of the intrusion is near y = 16; however
at t = 78.27, it is at y =13. The tips, B and C, exhibit similar outward movement.
Unfortunately, the presence of internal gravity waves and the mean shear flow does
not allow an accurate quantitative estimate of the velocity of individual intrusion
heads. Furthermore, the intrusions are three-dimensional and spatially intermittent.

Secondary vorticity is generated at the intrusions. Figure 18 gives a composite view
of the density and vorticity components at late time. The primary vorticity, figure
18(b), is more compact than the density intrusion, figure 18(a), and also than the
secondary vorticity fields in figure 18(c, d). It is useful to revisit the sketch of figure
16 to understand how secondary vorticity is generated at the intrusions. At the tip of
the intrusion CDE, the cross-stream velocity, v, is negative, while v is positive in the
reverse flow zones above and below, resulting in negative ωx in CD and positive ωx

in DE. Since the intrusions are embedded in a shear layer, ωy is also created. Inside
CDE, the outward flow has smaller streamwise speed than the reverse flow near
surface CD which comes from the free stream, and the change δU , over a vertical
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Figure 17. ρ ′ at the centre x-plane at late time for case A5. (a) t = 65.95, (b) t = 70.23,
(c) t = 74.27, (d) t = 78.27.

25

(a) (b)

(c) (d)

–0.01 0 0.01

20

15

10

5

0 5 10 15 20 25 30 35 40 45 50

25
–0.8 –0.6 –0.4 –0.2 0

20

15

10

5

0 5 10 15 20 25 30 35 40 45 50

z

25
–0.1 0 0.1

20

15

10

5

0 5 10 15 20 25 30 35 40 45 50

25
–0.1 0 0.1

20

15

10

5

0 5 10 15 20 25 30 35 40 45 50

z

y y

A

C
B

A1

Figure 18. Centre x-plane at late time, t = 79.62 for case A5. (a) ρ ′, (b) ωz, (c) ωy , (d) ωx .

distance δz, creates cross-stream vorticity, ωy . As noted on figure 16, at the left side
of the shear layer negative ωx and ωy are expected at zones of positive ρ ′, while
positive ωx and ωy are expected at zones of negative ρ ′. However, on the right side of
this figure, positive ωx and ωy are associated with positive ρ ′, while negative ωx and



44 S. Basak and S. Sarkar

–0.10 –0.05 0 0.05 0.10
25

20

15

10

5

0 5 10 15 20 25 30 35 4540 50

z

y

Figure 19. dw/dz at late times at the central x-plane for case A5, t = 79.8.

ωy are associated with negative ρ ′. The agreement of the ρ ′ and the ωy field in fig-
ure 18(a–c) with that expected from the schematic is particularly good.

Although the ωx field also shows broad agreement with the expected behaviour,
it contains many smaller-scale features, especially at the tip of the intrusions. These
additional features are caused by the baroclinic torque (the −(1/ρ0)∇ρ × gk term in
the vorticity equation) associated with the generation and passage of the vortical
internal gravity waves. Although internal gravity waves can contribute to ωy as well,
small-scale features are found to be more prominent in a constant-x cut of the ωx

field.
The internal gravity wave field at a late time for case A5 is briefly discussed

below. The vertical strain, dw/dz, is the negative of the horizontal divergence of an
incompressible flow field and is often used as a signature of emissions of internal
gravity waves (Riley & Lelong 2000; Diamessis et al. 2005). The dw/dz field is
shown at the central x plane at a late time for case A5 in figure 19. The vertical
strain in the central zone of the shear layer is associated with turbulence, while that
away from the shear layer is associated with the internal gravity waves. In the flow
considered here, the internal wave field is found to have smaller ρ ′ compared to that
in the intrusions. The dw/dz structures are predominantly inclined to the horizontal,
similar to the experimental observations of Dohan & Sutherland (2003) and Flynn &
Sutherland (2004), and the simulations of Gourlay et al. (2001) and Diamessis et al.
(2005). These structures also have significant cross-stream extent compared to the
shear layer, leading to transfer of momentum and horizontal vorticity away from the
shear layer.

6. Structure of dissipation and scalar mixing
There are zones of intense turbulent dissipation, ε, that largely coincide with the

locations of strong horizontal vorticity. In case A2, ε is strong in the braid region
between the ωz rollers, as well as in some locations embedded within the rollers and
at their periphery. Strong dissipation is also observed in the dislocations of vortex
cores. Regions with large ε are sparser in case A5 and, contrary to case A2, are
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Figure 20. Location of turbulent dissipation, ε at late times at the central y-plane,
(a) case A2, t = 82 (b) case A5, t = 79.8.

mainly confined to the dislocations. Thus, the dislocations induced by buoyancy in
the vortex cores provides a mechanism for dissipation at high N .

Locations of intense molecular mixing, measured by the dissipation of turbulent
potential energy, ερ , are quite similar to those of large ε as seen by comparing figure 21
with figure 20. Here, ερ is defined as

ερ =
ν

Pr

g

ρ0|dρ/dz|
∂ρ ′

∂xk

∂ρ ′

∂xk

=
1

2

g

ρ0|dρ/dz|χ (6.1)

where

χ = 2
ν

Pr

∂ρ ′

∂xk

∂ρ ′

∂xk

denotes the dissipation of the density variance. ερ signifies irreversible loss of turbulent
potential energy to the background density field and can be used as a measure of
molecular mixing of the density field (Winters et al. (1995), Jacobitz & Sarkar (1998),
Riley & deBruynKops (2003)). It was seen in § 5 that ρ ′ with significant spatial
segregation is mainly associated with the ωz cores. Besides, the ρ ′ structures also
aid in the collapse of sections of the cores to form dislocations. Therefore there is
significant ∂ρ ′/∂xk and associated ερ in the vortex cores and the dislocation regions.
Similarly the ωh present at the periphery of the cores and in the braid regions also
generates ρ ′ by rotational motion and the associated ∂ρ ′/∂xk also contributes to ερ .
Thus, the locations of ε and ερ are quite similar.
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central y-plane, (a) case A2, t = 82 (b) case A5, t = 79.8.

The evolution of net dissipation, integrated across the shear layer, is also of
interest and its value normalized with �U 3 is plotted in figure 22(a). As a reference
point, the normalized integrated dissipation for the unstratified case reaches a value
of approximately 5.5 × 10−3. In case A2, integrated ε decreases and then becomes
relatively constant. The decrease is caused by the reduction of ωh in the braid and
within the rollers due to stratification. However, at later times, new sites of ωh emerge
at the dislocation zones between the rollers, compensating for the reduced ε in other
zones to keep integrated ε relatively constant. In case A5, braid ωh is damped quite
early in the flow and, consequently, integrated ε also goes down quickly. However,
the annihilation of ωh helps the core dynamics to become important early in the flow
evolution, leading to the development of a lattice with dislocations having intense ωh

and ε. This more than compensates for the reduction in ε due to the vanishing of
braid vortices and explains the late time increase of integrated ε for case A5. Similar
to the integrated ε, the integrated ερ in figure 22(b) also remains fairly constant at
the later times for case A2, while it increases appreciably for case A5. The continuous
formation of small-scale layers of ρ ′ within the cores and the dislocation regions, and
the corresponding ∂ρ ′/∂xk , is responsible for this increase. The high values of both
integrated ε and ερ for case A5 and their increasing trend at late time, in spite of the
corresponding high Rib of nearly 45, is noteworthy.

The ratio of
∫

ερ dy and (
∫

ε dy +
∫

ερ dy) denotes the ratio of overall irreversible
dissipation of potential energy to the overall dissipation of both kinetic and potential
energy, and can be used as a measure of diapycnal mixing efficiency at the molecular
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level. This ratio, plotted for cases A2 and A5 in figure 22(c), is observed to increase
for both cases at late times reaching around 0.34 for case A2 and around 0.23 for
case A5. This shows that horizontal shear is capable of mixing the density field quite
efficiently although there is little overturning motion.

∫
ερ dy/

∫
ε/dy = Γd (Riley &

deBruynKops 2003), not plotted here, also increases with Rib and reaches about 0.51
for case A2 and about 0.3 for case A5 at late times. These are of similar order to the
late-time values of Γd lying between 0.4 and 0.5 observed in the high-Re simulations
of Riley & deBruynKops (2003). In their simulations, Γd tends to remain quite steady
with a slight decaying tendency at late times. However, in our simulations Γd is found
to increase slightly at late times which is even more pronounced for case A5.

Oceanographers often infer the turbulent eddy diffusivity, Kρ , from microstructure
measurements. If the buoyancy flux, −B , is a fixed proportion, Γ , of the turbulent
dissipation rate, ε, then the eddy diffusivity can be estimated using Kρ = Γ ε/N2,
Osborn (1980). The quantity Γd = ερ/ε can be measured directly in the ocean from
temperature gradient and velocity shear data, and is used as a surrogate for the
mixing efficiency, Oakey (1985). Studies of the mixing efficiency show that Γ and
Γd depend on other parameters such as the gradient Richardson number, Reynolds
number, shear number, and Prandtl number. The dependence on the Richardson
number is especially strong. In many data sets where vertical shear is the source of
turbulence, the maximum value of the mixing efficiency is about 0.2. The value of
0.2 is often used to infer Kρ from ε in oceanography. In the present flow, turbulence
forced by mean horizontal shear, the values of Γd given in the previous paragraph
are systematically higher than 0.2.
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7. Conclusions
DNS is used to investigate the structural organization of the vorticity, density

and dissipation fields in a horizontal-shear layer that evolves in a linearly stratified
medium. Cases with several values of N are simulated, all starting with the the same
initial mean flow profile and the same initial field of broadband, finite-amplitude
velocity perturbations. The effects of stratification on the structural organization of
the flow are discussed in detail for cases A2 and A5 which have a moderate and
a high initial value of bulk Richardson number Rib, respectively, with comparisons
drawn with the corresponding unstratified flow when appropriate. In all the stratified
cases, Rib increases with time so that eventually stratification dominates the dynamics
but to a different degree.

The organization of the vorticity field in the stratified cases is found to be
remarkably different from the unstratified situation. Although local lumping of the
vorticity field is observed in the unstratified case, distinct KH rollers, as observed in
transitional shear layers are not discerned, as they are obscured by small-scale vorticity
filaments that are distributed chaotically. This is consistent with previous studies of
the unstratified shear layer at a relatively high Re beyond mixing transition, Bell &
Mehta (1990) and Rogers & Moser (1994). However, in the presence of stratification,
coherent columnar vortex cores emerge from the random sea of turbulence. The
KH rollers that emerge in the stratified shear layer exhibit pairing, tearing and
amalgamation, similar to previous observations in high-Re shear layers exhibiting
coherent structures, Hernan & Jimenez (1982) and Dimotakis & Brown (1976).

The formation of organized KH rollers in the stratified shear layer in spite of the
high Re at late time and disorganization in the initial conditions is an important result
of this work. This effect is linked to the inhibition of vertical transport of fluid by
stratification which effectively suppresses the overturning of horizontal vorticity. The
suppression of the secondary vorticity causes a ‘reverse mixing transition’ wherein the
natural two-dimensional inviscid instability of the free shear layer becomes increasing
important resulting in the emergence of core/braid structures. Organized vortex
cores appear when 16 < Nt∗ < 20 in cases A2–A5, with corresponding values of
1.25 <Rib < 2.25. Organized braids also appear but they progressively weaken with
time owing to stratification. At the time of emergence, the vortex cores are thicker in
case A2 since the dimensional time, t∗, is larger. The organized structures at a given
Nt∗ are generally more distinct in case A5 compared to the other cases because three-
dimensional fluctuations typical of ‘unstratified’ turbulence are unable to develop
since the initial Rib = 1 is already large. However, later in time, buoyancy induces
vertical variability.

The demonstration of how the organized density and vorticity fields couple to
bring about significant vertical structure is another important result of this work,
and is summarized below. The velocity fluctuations stir up the initial linearly varying
density field to create density fluctuations. Short vortex cores with heavier under
lighter fluid, stable because of a combination of centrifugal and hydrostatic balance,
are observed. However, when there is a horizontal density gradient in a section of a
vortex core, it tends to tilt the section through a baroclinic torque. The tilting brings
local regions of adjacent vortex cores closer, which are then able to pair locally. The
inclined elements collapse to create an organized vorticity network. In case A5, a
lattice of organized vorticity (figure 9) consisting of dislocated cores of ωz and sheets
of ωh at the dislocations emerges which is quite distinct from the hexagonal lattice
observed in the unstratified low-Re studies of Comte et al. (1992) and Nygaard &
Glezer (1994). The collapsed vortical and density structures observed in the present



Dynamics of a stratified shear layer with horizontal shear 49

flow provide another example of the phenomenon of layering in flows with high
horizontal Froude number, Frh, that has been found in grid turbulence, wakes and
oceanic flows as discussed in the introduction. The continuous formation of KH
rollers in the present flow provides vortex cores which, being always susceptible to
linear and nonlinear (Re increases with time) instabilities associated with stratification
and vortex interactions, develop vertical variability. The height of the vortex cores
is approximately 6�U/N in the DNS. It is noteworthy that buoyancy constrains
the vortex core height to be approximately constant, although these cores interact
and continually thicken by pairing. Similar to the zig-zag instability, stratification
imposes a distinct vertical scale on the coherent vortices in this flow although the
present problem of a turbulent flow with many interacting, co-rotating vortices is
different from the isolated counter-rotating vortex pair studied by Billant & Chomaz
(2000a). The radius of the vortex cores increases with time due to pairing so that
the initial tall columns of vorticity tend towards a pancake shape. Terms in the
vorticity transport equation are examined. The baroclinic torque is found to be large
in the inclined vortex cores, showing the important coupling of buoyancy to vorticity.
Although horizontal advection is generally dominant, vertical stretching/compression
is also important to the evolution of ωz at localized sites. Viscous diffusion of all
components of vorticity is found to be strong at the dislocation sites whose thickness
in the DNS is approximately 15

√
ν/N .

There are locations of strong dissipation, ε, in the flow which, for the most part,
coincide with those of large horizontal vorticity, ωh. In case A2, ωh and ε are found
in the braid region, within the cores and in the zones of dislocations, with ωh and ε

decreasing in the braid region and increasing in the dislocations at late times. In case
A5, ε is noted within the cores and mainly in the dislocation zones, with the values
at the dislocations intensifying at late times. Regions of strong molecular mixing of
the density field, ερ , are largely concurrent with large ε. Both the overall dissipation
and density mixing remain significant at high Rib although the responsible structures
are qualitatively different from the unstratified case. The capacity of the high-Rib
horizontal-shear layer to dissipate and mix vertically in spite of the strong stabilizing
effect of stratification is noteworthy.

A stratified shear layer with vertical mean shear is a related flow that has been
the subject of much study. Such a shear layer eventually collapses; Rib → 0.3–0.5
depending on the details of the experiment. In the present case with mean horizontal
shear, the shear layer continues to grow since the formation of KH rollers and
their pairing correspond to horizontal flow, not directly affected by buoyancy. The
maximum value of the mixing efficiency is observed to be larger here relative to the
value of 0.2, based on vertical shear flow data, that is often used by oceanographers.
When Rib > 0.5 in flows with vertical mean shear, the mixing efficiency becomes small
while, in the present flow, the mixing efficiency does not show such a large decrease
even at Rib � 40. Thus, the cumulative vertical mixing induced by horizontal shear
may be significant in environmental flows even when the magnitude of horizontal
shear is small. The organized lattice of vorticity found here at high Nt∗ has not been
observed in previous studies of a stratified shear layer with vertical shear.

The dynamics at the edges of the shear layer have also been investigated. Patches
of light and heavy fluid converge owing to buoyancy and the combined fluid patches
spread out as intrusions, moving outward from the shear layer. These intrusions
have significant streamwise, vertical and temporal variability, and are sites for
generation of secondary vorticity. Opposition to overturning by baroclinic forces
in the stratified flow leads to the emission of internal gravity waves which propagate
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Figure 23. (a) Vertical and horizontal spectra of u and w at late time, t = 79.8 for case A5.
(b) Comparison of the evolution of centreline vrms for the different high-stratification
simulations. A5 is the original high stratification case described in table 1. The other cases are
described in table 2. (c) Evolution of the centreline ε for the different high stratification cases.

away from the shear layer. The internal waves are visualized using the vertical
strain dw/dz.

Thus, a high-Re and high-Rib shear layer with horizontal shear exhibits remarkably
rich dynamics: turbulence, coherent structures including dislocated vortex columns
and collapsed sheets of vorticity, density-driven intrusions, and internal gravity waves.
There is significant diapycnal mixing and dissipation which would be missed by two-
dimensional or hydrostatic simulations. This work reports the structural organization
of the vorticity, density and dissipation fields that is brought about by buoyancy
effects. Also of importance is the statistical evolution, including Reynolds stresses,
spectra, correlations, length scales, eddy diffusivity, and energy balances which will
be reported in a later paper.
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Appendix
Dislocations of the vertical vorticity, ωz, occurs over small vertical scales, especially

in case A5 with high N . To ensure that the small scales are resolved in these
simulations, the centreline u and w velocity spectra in the x- and z-directions are
plotted in figure 23(a). A decay of energy at high wavenumbers is noted without
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Case [Lx × Ly × Lz]/δω,0 Nx × Ny × Nz q2/�u2 Phase (compared to A5)

A5sd 107.5 × 64.5 × 32.25 640 × 384 × 192 0.029 different
A5lp 107.5 × 64.5 × 32.25 640 × 384 × 192 0.00029 same
A5zr 64.5 × 32.25 × 21.5 384 × 192 × 256 0.029 same

Table 2. Description of the different cases simulated by changing parameters of case A5 to
check the effects of initial condition and grid resolution.

any energy accumulation, with Eu(kx) and Eu(kz) decaying by 10 and 5 decades,
respectively. The vertical velocity, w, has relatively smaller energy in the larger scales.
A decay of about 5 decades is observed in both Ew(kx) and Ew(kz).

Figures 23(b) and 23(c) show the evolution of centreline vrms and ε for the original
high-stratification case A5 and different variants, based on initial conditions and grid
resolution, as described in table 2. To further ensure adequacy of z resolution, case
A5zr has been simulated in a smaller domain, with half the z grid spacing of case A5.
The agreement of centreline vrms as well as ε between cases A5 and A5zr confirms
the adequacy of the z resolution of the reported simulations.

The effect of changing initial conditions is studied through two new simulations.
Case A5sd has the same perturbation energy as case A5; however the phase of the
perturbation velocity fields is different. Case A5lp has 1/100 of the perturbation
energy of case A5, but the perturbation field has the same phase. The behaviour of
case A5sd in figure 23(b, c) is very similar to case A5, signifying the unimportance of
the phase of the perturbations to the statistical evolution of the flow, although the
location of vortex cores in visualizations (not shown) is quite different.

The initial evolution of case A5lp is quite different from case A5. The low initial
level of perturbations allows the development of smooth organized structures with
significantly less small-scale vertical variability than the distinct lattice structure for
case A5 at similar time. Correspondingly, the early values of vrms and ε are also smaller
for case A5lp in Figure 23(b, c). However, the late-time dynamics is dominated by the
dislocated lattice of ωz similar to that observed in case A5, and hence the statistics
are also similar. To summarize, the organized vorticity and density fields at large Nt∗

found here do not have significant dependence on the initial fluctuations.
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